mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Update DynamicLazyConstraintsComponent
This commit is contained in:
@@ -196,7 +196,7 @@ class Component(EnforceOverrides):
|
||||
) -> None:
|
||||
x, y = self.xy_instances(training_instances)
|
||||
for cat in x.keys():
|
||||
x[cat] = np.array(x[cat])
|
||||
x[cat] = np.array(x[cat], dtype=np.float32)
|
||||
y[cat] = np.array(y[cat])
|
||||
self.fit_xy(x, y)
|
||||
|
||||
|
||||
@@ -105,7 +105,10 @@ class DynamicConstraintsComponent(Component):
|
||||
features.extend(sample.after_lp.instance.to_list())
|
||||
features.extend(instance.get_constraint_features(cid))
|
||||
for ci in features:
|
||||
assert isinstance(ci, float)
|
||||
assert isinstance(ci, float), (
|
||||
f"Constraint features must be a list of floats. "
|
||||
f"Found {ci.__class__.__name__} instead."
|
||||
)
|
||||
x[category].append(features)
|
||||
cids[category].append(cid)
|
||||
|
||||
@@ -137,7 +140,7 @@ class DynamicConstraintsComponent(Component):
|
||||
x, y, _ = self.sample_xy_with_cids(instance, sample)
|
||||
return x, y
|
||||
|
||||
def sample_predict(
|
||||
def sample_predict_old(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
@@ -160,6 +163,29 @@ class DynamicConstraintsComponent(Component):
|
||||
pred += [cids[category][i]]
|
||||
return pred
|
||||
|
||||
def sample_predict(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: Sample,
|
||||
) -> List[Hashable]:
|
||||
pred: List[Hashable] = []
|
||||
if len(self.known_cids) == 0:
|
||||
logger.info("Classifiers not fitted. Skipping.")
|
||||
return pred
|
||||
x, _, cids = self.sample_xy_with_cids(instance, sample)
|
||||
for category in x.keys():
|
||||
assert category in self.classifiers
|
||||
assert category in self.thresholds
|
||||
clf = self.classifiers[category]
|
||||
thr = self.thresholds[category]
|
||||
nx = np.array(x[category])
|
||||
proba = clf.predict_proba(nx)
|
||||
t = thr.predict(nx)
|
||||
for i in range(proba.shape[0]):
|
||||
if proba[i][1] > t[1]:
|
||||
pred += [cids[category][i]]
|
||||
return pred
|
||||
|
||||
@overrides
|
||||
def fit_old(self, training_instances: List[Instance]) -> None:
|
||||
collected_cids = set()
|
||||
@@ -174,6 +200,24 @@ class DynamicConstraintsComponent(Component):
|
||||
self.known_cids.extend(sorted(collected_cids))
|
||||
super().fit_old(training_instances)
|
||||
|
||||
@overrides
|
||||
def fit(self, training_instances: List[Instance]) -> None:
|
||||
collected_cids = set()
|
||||
for instance in training_instances:
|
||||
instance.load()
|
||||
for sample in instance.samples:
|
||||
if (
|
||||
sample.after_mip is None
|
||||
or sample.after_mip.extra is None
|
||||
or sample.after_mip.extra[self.attr] is None
|
||||
):
|
||||
continue
|
||||
collected_cids |= sample.after_mip.extra[self.attr]
|
||||
instance.free()
|
||||
self.known_cids.clear()
|
||||
self.known_cids.extend(sorted(collected_cids))
|
||||
super().fit(training_instances)
|
||||
|
||||
@overrides
|
||||
def fit_xy(
|
||||
self,
|
||||
@@ -189,12 +233,15 @@ class DynamicConstraintsComponent(Component):
|
||||
self.thresholds[category].fit(self.classifiers[category], npx, npy)
|
||||
|
||||
@overrides
|
||||
def sample_evaluate_old(
|
||||
def sample_evaluate(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
sample: Sample,
|
||||
) -> Dict[Hashable, Dict[str, float]]:
|
||||
assert getattr(sample, self.attr) is not None
|
||||
assert sample.after_mip is not None
|
||||
assert sample.after_mip.extra is not None
|
||||
assert self.attr in sample.after_mip.extra
|
||||
actual = sample.after_mip.extra[self.attr]
|
||||
pred = set(self.sample_predict(instance, sample))
|
||||
tp: Dict[Hashable, int] = {}
|
||||
tn: Dict[Hashable, int] = {}
|
||||
@@ -210,12 +257,12 @@ class DynamicConstraintsComponent(Component):
|
||||
fp[category] = 0
|
||||
fn[category] = 0
|
||||
if cid in pred:
|
||||
if cid in getattr(sample, self.attr):
|
||||
if cid in actual:
|
||||
tp[category] += 1
|
||||
else:
|
||||
fp[category] += 1
|
||||
else:
|
||||
if cid in getattr(sample, self.attr):
|
||||
if cid in actual:
|
||||
fn[category] += 1
|
||||
else:
|
||||
tn[category] += 1
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from typing import Dict, List, TYPE_CHECKING, Hashable, Tuple, Any, Optional
|
||||
from typing import Dict, List, TYPE_CHECKING, Hashable, Tuple, Any, Optional, Set
|
||||
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
@@ -41,6 +41,7 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
self.classifiers = self.dynamic.classifiers
|
||||
self.thresholds = self.dynamic.thresholds
|
||||
self.known_cids = self.dynamic.known_cids
|
||||
self.lazy_enforced: Set[str] = set()
|
||||
|
||||
@staticmethod
|
||||
def enforce(
|
||||
@@ -54,21 +55,33 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
instance.enforce_lazy_constraint(solver.internal_solver, model, cid)
|
||||
|
||||
@overrides
|
||||
def before_solve_mip_old(
|
||||
def before_solve_mip(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
instance: Instance,
|
||||
model: Any,
|
||||
stats: LearningSolveStats,
|
||||
features: Features,
|
||||
training_data: TrainingSample,
|
||||
sample: Sample,
|
||||
) -> None:
|
||||
training_data.lazy_enforced = set()
|
||||
self.lazy_enforced.clear()
|
||||
logger.info("Predicting violated (dynamic) lazy constraints...")
|
||||
cids = self.dynamic.sample_predict(instance, training_data)
|
||||
cids = self.dynamic.sample_predict(instance, sample)
|
||||
logger.info("Enforcing %d lazy constraints..." % len(cids))
|
||||
self.enforce(cids, instance, model, solver)
|
||||
|
||||
@overrides
|
||||
def after_solve_mip(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
instance: Instance,
|
||||
model: Any,
|
||||
stats: LearningSolveStats,
|
||||
sample: Sample,
|
||||
) -> None:
|
||||
assert sample.after_mip is not None
|
||||
assert sample.after_mip.extra is not None
|
||||
sample.after_mip.extra["lazy_enforced"] = set(self.lazy_enforced)
|
||||
|
||||
@overrides
|
||||
def iteration_cb(
|
||||
self,
|
||||
@@ -83,23 +96,13 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
logger.debug("No violations found")
|
||||
return False
|
||||
else:
|
||||
sample = instance.training_data[-1]
|
||||
assert sample.lazy_enforced is not None
|
||||
sample.lazy_enforced |= set(cids)
|
||||
self.lazy_enforced |= set(cids)
|
||||
logger.debug(" %d violations found" % len(cids))
|
||||
self.enforce(cids, instance, model, solver)
|
||||
return True
|
||||
|
||||
# Delegate ML methods to self.dynamic
|
||||
# -------------------------------------------------------------------
|
||||
@overrides
|
||||
def sample_xy_old(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
return self.dynamic.sample_xy_old(instance, sample)
|
||||
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
@@ -111,13 +114,13 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
def sample_predict(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
sample: Sample,
|
||||
) -> List[Hashable]:
|
||||
return self.dynamic.sample_predict(instance, sample)
|
||||
|
||||
@overrides
|
||||
def fit_old(self, training_instances: List[Instance]) -> None:
|
||||
self.dynamic.fit_old(training_instances)
|
||||
def fit(self, training_instances: List[Instance]) -> None:
|
||||
self.dynamic.fit(training_instances)
|
||||
|
||||
@overrides
|
||||
def fit_xy(
|
||||
@@ -128,9 +131,9 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
self.dynamic.fit_xy(x, y)
|
||||
|
||||
@overrides
|
||||
def sample_evaluate_old(
|
||||
def sample_evaluate(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
sample: Sample,
|
||||
) -> Dict[Hashable, Dict[str, float]]:
|
||||
return self.dynamic.sample_evaluate_old(instance, sample)
|
||||
return self.dynamic.sample_evaluate(instance, sample)
|
||||
|
||||
@@ -51,7 +51,7 @@ class UserCutsComponent(Component):
|
||||
self.enforced.clear()
|
||||
self.n_added_in_callback = 0
|
||||
logger.info("Predicting violated user cuts...")
|
||||
cids = self.dynamic.sample_predict(instance, training_data)
|
||||
cids = self.dynamic.sample_predict_old(instance, training_data)
|
||||
logger.info("Enforcing %d user cuts ahead-of-time..." % len(cids))
|
||||
for cid in cids:
|
||||
instance.enforce_user_cut(solver.internal_solver, model, cid)
|
||||
|
||||
@@ -62,9 +62,9 @@ class Instance(ABC, EnforceOverrides):
|
||||
the problem. If two instances map into arrays of different lengths,
|
||||
they cannot be solved by the same LearningSolver object.
|
||||
|
||||
By default, returns [0].
|
||||
By default, returns [0.0].
|
||||
"""
|
||||
return [0]
|
||||
return [0.0]
|
||||
|
||||
def get_variable_features(self, var_name: VariableName) -> List[float]:
|
||||
"""
|
||||
@@ -81,9 +81,9 @@ class Instance(ABC, EnforceOverrides):
|
||||
length for all variables within the same category, for all relevant instances
|
||||
of the problem.
|
||||
|
||||
By default, returns [0].
|
||||
By default, returns [0.0].
|
||||
"""
|
||||
return [0]
|
||||
return [0.0]
|
||||
|
||||
def get_variable_category(self, var_name: VariableName) -> Optional[Category]:
|
||||
"""
|
||||
|
||||
@@ -159,6 +159,7 @@ class LearningSolver:
|
||||
# -------------------------------------------------------
|
||||
logger.info("Extracting features (after-load)...")
|
||||
features = FeaturesExtractor(self.internal_solver).extract(instance)
|
||||
features.extra = {}
|
||||
instance.features.__dict__ = features.__dict__
|
||||
sample.after_load = features
|
||||
|
||||
@@ -204,6 +205,7 @@ class LearningSolver:
|
||||
# -------------------------------------------------------
|
||||
logger.info("Extracting features (after-lp)...")
|
||||
features = FeaturesExtractor(self.internal_solver).extract(instance)
|
||||
features.extra = {}
|
||||
features.lp_solve = lp_stats
|
||||
sample.after_lp = features
|
||||
|
||||
@@ -267,6 +269,7 @@ class LearningSolver:
|
||||
logger.info("Extracting features (after-mip)...")
|
||||
features = FeaturesExtractor(self.internal_solver).extract(instance)
|
||||
features.mip_solve = mip_stats
|
||||
features.extra = {}
|
||||
sample.after_mip = features
|
||||
|
||||
# Add some information to training_sample
|
||||
|
||||
@@ -83,15 +83,20 @@ def training_instances() -> List[Instance]:
|
||||
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
|
||||
instances[0].samples = [
|
||||
Sample(
|
||||
after_lp=Features(
|
||||
instance=InstanceFeatures(),
|
||||
),
|
||||
after_lp=Features(instance=InstanceFeatures()),
|
||||
after_mip=Features(extra={"lazy_enforced": {"c1", "c2"}}),
|
||||
)
|
||||
),
|
||||
Sample(
|
||||
after_lp=Features(instance=InstanceFeatures()),
|
||||
after_mip=Features(extra={"lazy_enforced": {"c2", "c3"}}),
|
||||
),
|
||||
]
|
||||
instances[0].samples[0].after_lp.instance.to_list = Mock( # type: ignore
|
||||
return_value=[5.0]
|
||||
)
|
||||
instances[0].samples[1].after_lp.instance.to_list = Mock( # type: ignore
|
||||
return_value=[5.0]
|
||||
)
|
||||
instances[0].get_constraint_category = Mock( # type: ignore
|
||||
side_effect=lambda cid: {
|
||||
"c1": "type-a",
|
||||
@@ -108,7 +113,30 @@ def training_instances() -> List[Instance]:
|
||||
"c4": [3.0, 4.0],
|
||||
}[cid]
|
||||
)
|
||||
|
||||
instances[1].samples = [
|
||||
Sample(
|
||||
after_lp=Features(instance=InstanceFeatures()),
|
||||
after_mip=Features(extra={"lazy_enforced": {"c3", "c4"}}),
|
||||
)
|
||||
]
|
||||
instances[1].samples[0].after_lp.instance.to_list = Mock( # type: ignore
|
||||
return_value=[8.0]
|
||||
)
|
||||
instances[1].get_constraint_category = Mock( # type: ignore
|
||||
side_effect=lambda cid: {
|
||||
"c1": None,
|
||||
"c2": "type-a",
|
||||
"c3": "type-b",
|
||||
"c4": "type-b",
|
||||
}[cid]
|
||||
)
|
||||
instances[1].get_constraint_features = Mock( # type: ignore
|
||||
side_effect=lambda cid: {
|
||||
"c2": [7.0, 8.0, 9.0],
|
||||
"c3": [5.0, 6.0],
|
||||
"c4": [7.0, 8.0],
|
||||
}[cid]
|
||||
)
|
||||
return instances
|
||||
|
||||
|
||||
@@ -131,11 +159,11 @@ def test_sample_xy(training_instances: List[Instance]) -> None:
|
||||
assert_equals(y_actual, y_expected)
|
||||
|
||||
|
||||
def test_fit_old(training_instances_old: List[Instance]) -> None:
|
||||
def test_fit(training_instances: List[Instance]) -> None:
|
||||
clf = Mock(spec=Classifier)
|
||||
clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
|
||||
comp = DynamicLazyConstraintsComponent(classifier=clf)
|
||||
comp.fit_old(training_instances_old)
|
||||
comp.fit(training_instances)
|
||||
assert clf.clone.call_count == 2
|
||||
|
||||
assert "type-a" in comp.classifiers
|
||||
@@ -145,11 +173,11 @@ def test_fit_old(training_instances_old: List[Instance]) -> None:
|
||||
clf_a.fit.call_args[0][0], # type: ignore
|
||||
np.array(
|
||||
[
|
||||
[50.0, 1.0, 2.0, 3.0],
|
||||
[50.0, 4.0, 5.0, 6.0],
|
||||
[50.0, 1.0, 2.0, 3.0],
|
||||
[50.0, 4.0, 5.0, 6.0],
|
||||
[80.0, 7.0, 8.0, 9.0],
|
||||
[5.0, 1.0, 2.0, 3.0],
|
||||
[5.0, 4.0, 5.0, 6.0],
|
||||
[5.0, 1.0, 2.0, 3.0],
|
||||
[5.0, 4.0, 5.0, 6.0],
|
||||
[8.0, 7.0, 8.0, 9.0],
|
||||
]
|
||||
),
|
||||
)
|
||||
@@ -173,12 +201,12 @@ def test_fit_old(training_instances_old: List[Instance]) -> None:
|
||||
clf_b.fit.call_args[0][0], # type: ignore
|
||||
np.array(
|
||||
[
|
||||
[50.0, 1.0, 2.0],
|
||||
[50.0, 3.0, 4.0],
|
||||
[50.0, 1.0, 2.0],
|
||||
[50.0, 3.0, 4.0],
|
||||
[80.0, 5.0, 6.0],
|
||||
[80.0, 7.0, 8.0],
|
||||
[5.0, 1.0, 2.0],
|
||||
[5.0, 3.0, 4.0],
|
||||
[5.0, 1.0, 2.0],
|
||||
[5.0, 3.0, 4.0],
|
||||
[8.0, 5.0, 6.0],
|
||||
[8.0, 7.0, 8.0],
|
||||
]
|
||||
),
|
||||
)
|
||||
@@ -197,7 +225,7 @@ def test_fit_old(training_instances_old: List[Instance]) -> None:
|
||||
)
|
||||
|
||||
|
||||
def test_sample_predict_evaluate_old(training_instances_old: List[Instance]) -> None:
|
||||
def test_sample_predict_evaluate(training_instances: List[Instance]) -> None:
|
||||
comp = DynamicLazyConstraintsComponent()
|
||||
comp.known_cids.extend(["c1", "c2", "c3", "c4"])
|
||||
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
@@ -211,15 +239,14 @@ def test_sample_predict_evaluate_old(training_instances_old: List[Instance]) ->
|
||||
side_effect=lambda _: np.array([[0.9, 0.1], [0.1, 0.9]])
|
||||
)
|
||||
pred = comp.sample_predict(
|
||||
training_instances_old[0],
|
||||
training_instances_old[0].training_data[0],
|
||||
training_instances[0],
|
||||
training_instances[0].samples[0],
|
||||
)
|
||||
assert pred == ["c1", "c4"]
|
||||
ev = comp.sample_evaluate_old(
|
||||
training_instances_old[0],
|
||||
training_instances_old[0].training_data[0],
|
||||
ev = comp.sample_evaluate(
|
||||
training_instances[0],
|
||||
training_instances[0].samples[0],
|
||||
)
|
||||
print(ev)
|
||||
assert ev == {
|
||||
"type-a": classifier_evaluation_dict(tp=1, fp=0, tn=0, fn=1),
|
||||
"type-b": classifier_evaluation_dict(tp=0, fp=1, tn=1, fn=0),
|
||||
|
||||
@@ -67,8 +67,9 @@ def test_subtour() -> None:
|
||||
instance = TravelingSalesmanInstance(n_cities, distances)
|
||||
solver = LearningSolver()
|
||||
solver.solve(instance)
|
||||
assert instance.training_data[0].lazy_enforced is not None
|
||||
assert len(instance.training_data[0].lazy_enforced) > 0
|
||||
lazy_enforced = instance.samples[0].after_mip.extra["lazy_enforced"]
|
||||
assert lazy_enforced is not None
|
||||
assert len(lazy_enforced) > 0
|
||||
solution = instance.training_data[0].solution
|
||||
assert solution is not None
|
||||
assert solution["x[(0, 1)]"] == 1.0
|
||||
|
||||
Reference in New Issue
Block a user