mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Fix various warnings
This commit is contained in:
@@ -41,11 +41,11 @@ class RelaxationComponent(Component):
|
|||||||
If a constraint has slack greater than this threshold, then the constraint is
|
If a constraint has slack greater than this threshold, then the constraint is
|
||||||
considered loose. By default, this threshold equals a small positive number to
|
considered loose. By default, this threshold equals a small positive number to
|
||||||
compensate for numerical issues.
|
compensate for numerical issues.
|
||||||
check_dropped : bool, optional
|
check_feasibility : bool, optional
|
||||||
If `check_dropped` is true, then, after the problem is solved, the component
|
If true, after the problem is solved, the component verifies that all dropped
|
||||||
verifies that all dropped constraints are still satisfied, re-adds the violated
|
constraints are still satisfied, re-adds the violated ones and resolves the
|
||||||
ones and resolves the problem. This loop continues until either no violations
|
problem. This loop continues until either no violations are found, or a maximum
|
||||||
are found, or a maximum number of iterations is reached.
|
number of iterations is reached.
|
||||||
violation_tolerance : float, optional
|
violation_tolerance : float, optional
|
||||||
If `check_dropped` is true, a constraint is considered satisfied during the
|
If `check_dropped` is true, a constraint is considered satisfied during the
|
||||||
check if its violation is smaller than this tolerance.
|
check if its violation is smaller than this tolerance.
|
||||||
@@ -61,7 +61,7 @@ class RelaxationComponent(Component):
|
|||||||
tight_classifier=CountingClassifier(),
|
tight_classifier=CountingClassifier(),
|
||||||
tight_threshold=0.95,
|
tight_threshold=0.95,
|
||||||
slack_tolerance=1e-5,
|
slack_tolerance=1e-5,
|
||||||
check_dropped=False,
|
check_feasibility=False,
|
||||||
violation_tolerance=1e-5,
|
violation_tolerance=1e-5,
|
||||||
max_check_iterations=3,
|
max_check_iterations=3,
|
||||||
):
|
):
|
||||||
@@ -73,7 +73,7 @@ class RelaxationComponent(Component):
|
|||||||
slack_tolerance=slack_tolerance,
|
slack_tolerance=slack_tolerance,
|
||||||
violation_tolerance=violation_tolerance,
|
violation_tolerance=violation_tolerance,
|
||||||
max_iterations=max_check_iterations,
|
max_iterations=max_check_iterations,
|
||||||
check_dropped=check_dropped,
|
check_feasibility=check_feasibility,
|
||||||
),
|
),
|
||||||
ConvertTightIneqsIntoEqsStep(
|
ConvertTightIneqsIntoEqsStep(
|
||||||
classifier=tight_classifier,
|
classifier=tight_classifier,
|
||||||
@@ -86,8 +86,8 @@ class RelaxationComponent(Component):
|
|||||||
def before_solve(self, solver, instance, model):
|
def before_solve(self, solver, instance, model):
|
||||||
self.composite.before_solve(solver, instance, model)
|
self.composite.before_solve(solver, instance, model)
|
||||||
|
|
||||||
def after_solve(self, solver, instance, model, results):
|
def after_solve(self, solver, instance, model, stats, training_data):
|
||||||
self.composite.after_solve(solver, instance, model, results)
|
self.composite.after_solve(solver, instance, model, stats, training_data)
|
||||||
|
|
||||||
def fit(self, training_instances):
|
def fit(self, training_instances):
|
||||||
self.composite.fit(training_instances)
|
self.composite.fit(training_instances)
|
||||||
|
|||||||
@@ -8,8 +8,9 @@ import time
|
|||||||
import sys
|
import sys
|
||||||
|
|
||||||
|
|
||||||
class TimeFormatter:
|
class TimeFormatter(logging.Formatter):
|
||||||
def __init__(self, start_time, log_colors):
|
def __init__(self, start_time, log_colors):
|
||||||
|
super().__init__()
|
||||||
self.start_time = start_time
|
self.start_time = start_time
|
||||||
self.log_colors = log_colors
|
self.log_colors = log_colors
|
||||||
|
|
||||||
|
|||||||
@@ -284,7 +284,13 @@ class LearningSolver:
|
|||||||
|
|
||||||
return stats
|
return stats
|
||||||
|
|
||||||
def parallel_solve(self, instances, n_jobs=4, label="Solve", output=[]):
|
def parallel_solve(
|
||||||
|
self,
|
||||||
|
instances,
|
||||||
|
n_jobs=4,
|
||||||
|
label="Solve",
|
||||||
|
output=None,
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
Solves multiple instances in parallel.
|
Solves multiple instances in parallel.
|
||||||
|
|
||||||
@@ -295,6 +301,12 @@ class LearningSolver:
|
|||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
output: [str] or None
|
||||||
|
If instances are file names and output is provided, write the modified
|
||||||
|
instances to these files, instead of replacing the original files. If
|
||||||
|
output is None, discard modified instance.
|
||||||
|
label: str
|
||||||
|
Label to show in the progress bar.
|
||||||
instances: [miplearn.Instance] or [str]
|
instances: [miplearn.Instance] or [str]
|
||||||
The instances to be solved
|
The instances to be solved
|
||||||
n_jobs: int
|
n_jobs: int
|
||||||
@@ -308,6 +320,8 @@ class LearningSolver:
|
|||||||
[solver.solve(p) for p in instances]
|
[solver.solve(p) for p in instances]
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
if output is None:
|
||||||
|
output = []
|
||||||
self.internal_solver = None
|
self.internal_solver = None
|
||||||
self._silence_miplearn_logger()
|
self._silence_miplearn_logger()
|
||||||
SOLVER[0] = self
|
SOLVER[0] = self
|
||||||
|
|||||||
@@ -2,12 +2,12 @@
|
|||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
import logging
|
||||||
import re
|
import re
|
||||||
import sys
|
import sys
|
||||||
import logging
|
|
||||||
import pyomo
|
|
||||||
from abc import abstractmethod
|
|
||||||
from io import StringIO
|
from io import StringIO
|
||||||
|
|
||||||
|
import pyomo
|
||||||
from pyomo import environ as pe
|
from pyomo import environ as pe
|
||||||
from pyomo.core import Var, Constraint
|
from pyomo.core import Var, Constraint
|
||||||
|
|
||||||
|
|||||||
@@ -14,3 +14,4 @@ scikit-learn~=0.23
|
|||||||
tqdm~=4.54
|
tqdm~=4.54
|
||||||
black==20.8b1
|
black==20.8b1
|
||||||
pre-commit~=2.9
|
pre-commit~=2.9
|
||||||
|
scipy~=1.6.0
|
||||||
|
|||||||
Reference in New Issue
Block a user