Move instance fixtures into the main source; remove duplication

This commit is contained in:
2021-04-09 18:45:06 -05:00
parent f3fd1e0cda
commit a8224b5a38
15 changed files with 188 additions and 225 deletions

View File

@@ -19,6 +19,7 @@ from miplearn.solvers.internal import (
LazyCallback,
MIPSolveStats,
)
from miplearn.solvers.pyomo.base import PyomoTestInstanceKnapsack
from miplearn.types import (
SolverParams,
UserCutCallback,
@@ -442,3 +443,77 @@ class GurobiSolver(InternalSolver):
params=self.params,
lazy_cb_frequency=self.lazy_cb_frequency,
)
@overrides
def build_test_instance_infeasible(self) -> Instance:
return GurobiTestInstanceInfeasible()
@overrides
def build_test_instance_redundancy(self) -> Instance:
return GurobiTestInstanceRedundancy()
@overrides
def build_test_instance_knapsack(self) -> Instance:
return GurobiTestInstanceKnapsack(
weights=[23.0, 26.0, 20.0, 18.0],
prices=[505.0, 352.0, 458.0, 220.0],
capacity=67.0,
)
class GurobiTestInstanceInfeasible(Instance):
@overrides
def to_model(self) -> Any:
import gurobipy as gp
from gurobipy import GRB
model = gp.Model()
x = model.addVars(1, vtype=GRB.BINARY, name="x")
model.addConstr(x[0] >= 2)
model.setObjective(x[0])
return model
class GurobiTestInstanceRedundancy(Instance):
def to_model(self) -> Any:
import gurobipy as gp
from gurobipy import GRB
model = gp.Model()
x = model.addVars(2, vtype=GRB.BINARY, name="x")
model.addConstr(x[0] + x[1] <= 1)
model.addConstr(x[0] + x[1] <= 2)
model.setObjective(x[0] + x[1], GRB.MAXIMIZE)
return model
class GurobiTestInstanceKnapsack(PyomoTestInstanceKnapsack):
"""
Simpler (one-dimensional) knapsack instance, implemented directly in Gurobi
instead of Pyomo, used for testing.
"""
def __init__(
self,
weights: List[float],
prices: List[float],
capacity: float,
) -> None:
super().__init__(weights, prices, capacity)
@overrides
def to_model(self) -> Any:
import gurobipy as gp
from gurobipy import GRB
model = gp.Model("Knapsack")
n = len(self.weights)
x = model.addVars(n, vtype=GRB.BINARY, name="x")
model.addConstr(
gp.quicksum(x[i] * self.weights[i] for i in range(n)) <= self.capacity,
"eq_capacity",
)
model.setObjective(
gp.quicksum(x[i] * self.prices[i] for i in range(n)), GRB.MAXIMIZE
)
return model