mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Move instance fixtures into the main source; remove duplication
This commit is contained in:
3
tests/fixtures/__init__.py
vendored
3
tests/fixtures/__init__.py
vendored
@@ -1,3 +0,0 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
44
tests/fixtures/infeasible.py
vendored
44
tests/fixtures/infeasible.py
vendored
@@ -1,44 +0,0 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from overrides import overrides
|
||||
from pyomo import environ as pe
|
||||
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||
from tests.solvers import _is_subclass_or_instance
|
||||
|
||||
|
||||
class InfeasiblePyomoInstance(Instance):
|
||||
@overrides
|
||||
def to_model(self) -> pe.ConcreteModel:
|
||||
model = pe.ConcreteModel()
|
||||
model.x = pe.Var([0], domain=pe.Binary)
|
||||
model.OBJ = pe.Objective(expr=model.x[0], sense=pe.maximize)
|
||||
model.eq = pe.Constraint(expr=model.x[0] >= 2)
|
||||
return model
|
||||
|
||||
|
||||
class InfeasibleGurobiInstance(Instance):
|
||||
@overrides
|
||||
def to_model(self) -> Any:
|
||||
import gurobipy as gp
|
||||
from gurobipy import GRB
|
||||
|
||||
model = gp.Model()
|
||||
x = model.addVars(1, vtype=GRB.BINARY, name="x")
|
||||
model.addConstr(x[0] >= 2)
|
||||
model.setObjective(x[0])
|
||||
return model
|
||||
|
||||
|
||||
def get_infeasible_instance(solver: Any) -> Instance:
|
||||
if _is_subclass_or_instance(solver, BasePyomoSolver):
|
||||
return InfeasiblePyomoInstance()
|
||||
if _is_subclass_or_instance(solver, GurobiSolver):
|
||||
return InfeasibleGurobiInstance()
|
||||
assert False
|
||||
50
tests/fixtures/knapsack.py
vendored
50
tests/fixtures/knapsack.py
vendored
@@ -1,50 +0,0 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import List, Any, Tuple
|
||||
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.problems.knapsack import KnapsackInstance, GurobiKnapsackInstance
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.internal import InternalSolver
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||
from tests.solvers import _is_subclass_or_instance
|
||||
|
||||
|
||||
def get_test_pyomo_instances() -> Tuple[List[Instance], List[Any]]:
|
||||
instances: List[Instance] = [
|
||||
KnapsackInstance(
|
||||
weights=[23.0, 26.0, 20.0, 18.0],
|
||||
prices=[505.0, 352.0, 458.0, 220.0],
|
||||
capacity=67.0,
|
||||
),
|
||||
KnapsackInstance(
|
||||
weights=[25.0, 30.0, 22.0, 18.0],
|
||||
prices=[500.0, 365.0, 420.0, 150.0],
|
||||
capacity=70.0,
|
||||
),
|
||||
]
|
||||
models = [instance.to_model() for instance in instances]
|
||||
solver = LearningSolver()
|
||||
for i in range(len(instances)):
|
||||
solver.solve(instances[i], models[i])
|
||||
return instances, models
|
||||
|
||||
|
||||
def get_knapsack_instance(solver: InternalSolver) -> Instance:
|
||||
if _is_subclass_or_instance(solver, BasePyomoSolver):
|
||||
return KnapsackInstance(
|
||||
weights=[23.0, 26.0, 20.0, 18.0],
|
||||
prices=[505.0, 352.0, 458.0, 220.0],
|
||||
capacity=67.0,
|
||||
)
|
||||
elif _is_subclass_or_instance(solver, GurobiSolver):
|
||||
return GurobiKnapsackInstance(
|
||||
weights=[23.0, 26.0, 20.0, 18.0],
|
||||
prices=[505.0, 352.0, 458.0, 220.0],
|
||||
capacity=67.0,
|
||||
)
|
||||
else:
|
||||
assert False
|
||||
42
tests/fixtures/redundant.py
vendored
42
tests/fixtures/redundant.py
vendored
@@ -1,42 +0,0 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
from typing import Any
|
||||
|
||||
import pyomo.environ as pe
|
||||
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||
from tests.solvers import _is_subclass_or_instance
|
||||
|
||||
|
||||
class PyomoInstanceWithRedundancy(Instance):
|
||||
def to_model(self) -> pe.ConcreteModel:
|
||||
model = pe.ConcreteModel()
|
||||
model.x = pe.Var([0, 1], domain=pe.Binary)
|
||||
model.OBJ = pe.Objective(expr=model.x[0] + model.x[1], sense=pe.maximize)
|
||||
model.eq1 = pe.Constraint(expr=model.x[0] + model.x[1] <= 1)
|
||||
model.eq2 = pe.Constraint(expr=model.x[0] + model.x[1] <= 2)
|
||||
return model
|
||||
|
||||
|
||||
class GurobiInstanceWithRedundancy(Instance):
|
||||
def to_model(self) -> Any:
|
||||
import gurobipy as gp
|
||||
from gurobipy import GRB
|
||||
|
||||
model = gp.Model()
|
||||
x = model.addVars(2, vtype=GRB.BINARY, name="x")
|
||||
model.addConstr(x[0] + x[1] <= 1)
|
||||
model.addConstr(x[0] + x[1] <= 2)
|
||||
model.setObjective(x[0] + x[1], GRB.MAXIMIZE)
|
||||
return model
|
||||
|
||||
|
||||
def get_instance_with_redundancy(solver: Any) -> Instance:
|
||||
if _is_subclass_or_instance(solver, BasePyomoSolver):
|
||||
return PyomoInstanceWithRedundancy()
|
||||
if _is_subclass_or_instance(solver, GurobiSolver):
|
||||
return GurobiInstanceWithRedundancy()
|
||||
assert False
|
||||
Reference in New Issue
Block a user