Implement MultiKnapsackGenerator and MultiKnapsackInstance

This commit is contained in:
2020-01-30 07:44:57 -06:00
parent 003ea473e7
commit a9776715f4
8 changed files with 229 additions and 97 deletions

View File

@@ -3,25 +3,28 @@
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import LearningSolver
from miplearn.problems.knapsack import KnapsackInstance2
from miplearn.problems.knapsack import MultiKnapsackInstance
from miplearn.branching import BranchPriorityComponent
from miplearn.warmstart import WarmStartComponent
import numpy as np
def _get_instance():
return MultiKnapsackInstance(
weights=np.array([[23., 26., 20., 18.]]),
prices=np.array([505., 352., 458., 220.]),
capacities=np.array([67.])
)
def test_solver():
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.)
instance = _get_instance()
solver = LearningSolver()
solver.solve(instance)
solver.fit()
solver.solve(instance)
def test_solve_save_load_state():
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.)
instance = _get_instance()
components_before = {
"warm-start": WarmStartComponent(),
"branch-priority": BranchPriorityComponent(),
@@ -43,10 +46,7 @@ def test_solve_save_load_state():
assert len(solver.components["warm-start"].y_train) == prev_y_train_len
def test_parallel_solve():
instances = [KnapsackInstance2(weights=np.random.rand(5),
prices=np.random.rand(5),
capacity=3.0)
for _ in range(10)]
instances = [_get_instance() for _ in range(10)]
solver = LearningSolver()
results = solver.parallel_solve(instances, n_jobs=3)
assert len(results) == 10
@@ -54,9 +54,7 @@ def test_parallel_solve():
assert len(solver.components["warm-start"].y_train[0]) == 10
def test_solver_random_branch_priority():
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.)
instance = _get_instance()
components = {
"warm-start": BranchPriorityComponent(initial_priority=np.array([1, 2, 3, 4])),
}

View File

@@ -2,59 +2,19 @@
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import LearningSolver
from miplearn.transformers import PerVariableTransformer
from miplearn.problems.knapsack import KnapsackInstance, KnapsackInstance2
from miplearn.problems.knapsack import MultiKnapsackInstance
import numpy as np
import pyomo.environ as pe
def test_transform():
transformer = PerVariableTransformer()
instance = KnapsackInstance(weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.)
model = instance.to_model()
solver = pe.SolverFactory('gurobi')
solver.options["threads"] = 1
solver.solve(model)
var_split = transformer.split_variables(instance, model)
var_split_expected = {
"default": [
(model.x, 0),
(model.x, 1),
(model.x, 2),
(model.x, 3)
]
}
assert var_split == var_split_expected
var_index_pairs = [(model.x, i) for i in range(4)]
x_actual = transformer.transform_instance(instance, var_index_pairs)
x_expected = np.array([
[67., 21.75, 23., 505.],
[67., 21.75, 26., 352.],
[67., 21.75, 20., 458.],
[67., 21.75, 18., 220.],
])
assert x_expected.tolist() == np.round(x_actual, decimals=2).tolist()
solver.solve(model)
y_actual = transformer.transform_solution(var_index_pairs)
y_expected = np.array([
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
])
assert y_actual.tolist() == y_expected.tolist()
def test_transform_with_categories():
transformer = PerVariableTransformer()
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.)
instance = MultiKnapsackInstance(
weights=np.array([[23., 26., 20., 18.]]),
prices=np.array([505., 352., 458., 220.]),
capacities=np.array([67.])
)
model = instance.to_model()
solver = pe.SolverFactory('gurobi')
solver.options["threads"] = 1
@@ -71,10 +31,11 @@ def test_transform_with_categories():
var_index_pairs = var_split[0]
x_actual = transformer.transform_instance(instance, var_index_pairs)
x_expected = np.array([
[23., 26., 20., 18., 505., 352., 458., 220.]
x_expected = np.hstack([
instance.get_instance_features(),
instance.get_variable_features(model.x, 0),
])
assert x_expected.tolist() == np.round(x_actual, decimals=2).tolist()
assert (x_expected == x_actual).all()
solver.solve(model)