mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Implement MultiKnapsackGenerator and MultiKnapsackInstance
This commit is contained in:
@@ -3,25 +3,28 @@
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
from miplearn import LearningSolver
|
||||
from miplearn.problems.knapsack import KnapsackInstance2
|
||||
from miplearn.problems.knapsack import MultiKnapsackInstance
|
||||
from miplearn.branching import BranchPriorityComponent
|
||||
from miplearn.warmstart import WarmStartComponent
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _get_instance():
|
||||
return MultiKnapsackInstance(
|
||||
weights=np.array([[23., 26., 20., 18.]]),
|
||||
prices=np.array([505., 352., 458., 220.]),
|
||||
capacities=np.array([67.])
|
||||
)
|
||||
|
||||
def test_solver():
|
||||
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
|
||||
prices=[505., 352., 458., 220.],
|
||||
capacity=67.)
|
||||
instance = _get_instance()
|
||||
solver = LearningSolver()
|
||||
solver.solve(instance)
|
||||
solver.fit()
|
||||
solver.solve(instance)
|
||||
|
||||
def test_solve_save_load_state():
|
||||
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
|
||||
prices=[505., 352., 458., 220.],
|
||||
capacity=67.)
|
||||
instance = _get_instance()
|
||||
components_before = {
|
||||
"warm-start": WarmStartComponent(),
|
||||
"branch-priority": BranchPriorityComponent(),
|
||||
@@ -43,10 +46,7 @@ def test_solve_save_load_state():
|
||||
assert len(solver.components["warm-start"].y_train) == prev_y_train_len
|
||||
|
||||
def test_parallel_solve():
|
||||
instances = [KnapsackInstance2(weights=np.random.rand(5),
|
||||
prices=np.random.rand(5),
|
||||
capacity=3.0)
|
||||
for _ in range(10)]
|
||||
instances = [_get_instance() for _ in range(10)]
|
||||
solver = LearningSolver()
|
||||
results = solver.parallel_solve(instances, n_jobs=3)
|
||||
assert len(results) == 10
|
||||
@@ -54,9 +54,7 @@ def test_parallel_solve():
|
||||
assert len(solver.components["warm-start"].y_train[0]) == 10
|
||||
|
||||
def test_solver_random_branch_priority():
|
||||
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
|
||||
prices=[505., 352., 458., 220.],
|
||||
capacity=67.)
|
||||
instance = _get_instance()
|
||||
components = {
|
||||
"warm-start": BranchPriorityComponent(initial_priority=np.array([1, 2, 3, 4])),
|
||||
}
|
||||
|
||||
@@ -2,59 +2,19 @@
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
from miplearn import LearningSolver
|
||||
from miplearn.transformers import PerVariableTransformer
|
||||
from miplearn.problems.knapsack import KnapsackInstance, KnapsackInstance2
|
||||
from miplearn.problems.knapsack import MultiKnapsackInstance
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
|
||||
|
||||
def test_transform():
|
||||
transformer = PerVariableTransformer()
|
||||
instance = KnapsackInstance(weights=[23., 26., 20., 18.],
|
||||
prices=[505., 352., 458., 220.],
|
||||
capacity=67.)
|
||||
model = instance.to_model()
|
||||
solver = pe.SolverFactory('gurobi')
|
||||
solver.options["threads"] = 1
|
||||
solver.solve(model)
|
||||
|
||||
var_split = transformer.split_variables(instance, model)
|
||||
var_split_expected = {
|
||||
"default": [
|
||||
(model.x, 0),
|
||||
(model.x, 1),
|
||||
(model.x, 2),
|
||||
(model.x, 3)
|
||||
]
|
||||
}
|
||||
assert var_split == var_split_expected
|
||||
var_index_pairs = [(model.x, i) for i in range(4)]
|
||||
|
||||
x_actual = transformer.transform_instance(instance, var_index_pairs)
|
||||
x_expected = np.array([
|
||||
[67., 21.75, 23., 505.],
|
||||
[67., 21.75, 26., 352.],
|
||||
[67., 21.75, 20., 458.],
|
||||
[67., 21.75, 18., 220.],
|
||||
])
|
||||
assert x_expected.tolist() == np.round(x_actual, decimals=2).tolist()
|
||||
|
||||
solver.solve(model)
|
||||
y_actual = transformer.transform_solution(var_index_pairs)
|
||||
y_expected = np.array([
|
||||
[0., 1.],
|
||||
[1., 0.],
|
||||
[0., 1.],
|
||||
[0., 1.],
|
||||
])
|
||||
assert y_actual.tolist() == y_expected.tolist()
|
||||
|
||||
|
||||
def test_transform_with_categories():
|
||||
transformer = PerVariableTransformer()
|
||||
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
|
||||
prices=[505., 352., 458., 220.],
|
||||
capacity=67.)
|
||||
instance = MultiKnapsackInstance(
|
||||
weights=np.array([[23., 26., 20., 18.]]),
|
||||
prices=np.array([505., 352., 458., 220.]),
|
||||
capacities=np.array([67.])
|
||||
)
|
||||
model = instance.to_model()
|
||||
solver = pe.SolverFactory('gurobi')
|
||||
solver.options["threads"] = 1
|
||||
@@ -71,10 +31,11 @@ def test_transform_with_categories():
|
||||
|
||||
var_index_pairs = var_split[0]
|
||||
x_actual = transformer.transform_instance(instance, var_index_pairs)
|
||||
x_expected = np.array([
|
||||
[23., 26., 20., 18., 505., 352., 458., 220.]
|
||||
x_expected = np.hstack([
|
||||
instance.get_instance_features(),
|
||||
instance.get_variable_features(model.x, 0),
|
||||
])
|
||||
assert x_expected.tolist() == np.round(x_actual, decimals=2).tolist()
|
||||
assert (x_expected == x_actual).all()
|
||||
|
||||
solver.solve(model)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user