Implement MultiKnapsackGenerator and MultiKnapsackInstance

This commit is contained in:
2020-01-30 07:44:57 -06:00
parent 003ea473e7
commit a9776715f4
8 changed files with 229 additions and 97 deletions

View File

@@ -3,25 +3,28 @@
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import LearningSolver
from miplearn.problems.knapsack import KnapsackInstance2
from miplearn.problems.knapsack import MultiKnapsackInstance
from miplearn.branching import BranchPriorityComponent
from miplearn.warmstart import WarmStartComponent
import numpy as np
def _get_instance():
return MultiKnapsackInstance(
weights=np.array([[23., 26., 20., 18.]]),
prices=np.array([505., 352., 458., 220.]),
capacities=np.array([67.])
)
def test_solver():
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.)
instance = _get_instance()
solver = LearningSolver()
solver.solve(instance)
solver.fit()
solver.solve(instance)
def test_solve_save_load_state():
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.)
instance = _get_instance()
components_before = {
"warm-start": WarmStartComponent(),
"branch-priority": BranchPriorityComponent(),
@@ -43,10 +46,7 @@ def test_solve_save_load_state():
assert len(solver.components["warm-start"].y_train) == prev_y_train_len
def test_parallel_solve():
instances = [KnapsackInstance2(weights=np.random.rand(5),
prices=np.random.rand(5),
capacity=3.0)
for _ in range(10)]
instances = [_get_instance() for _ in range(10)]
solver = LearningSolver()
results = solver.parallel_solve(instances, n_jobs=3)
assert len(results) == 10
@@ -54,9 +54,7 @@ def test_parallel_solve():
assert len(solver.components["warm-start"].y_train[0]) == 10
def test_solver_random_branch_priority():
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.)
instance = _get_instance()
components = {
"warm-start": BranchPriorityComponent(initial_priority=np.array([1, 2, 3, 4])),
}