parent
003ea473e7
commit
a9776715f4
@ -0,0 +1,3 @@
|
|||||||
|
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||||
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
@ -0,0 +1,44 @@
|
|||||||
|
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||||
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||||
|
|
||||||
|
from miplearn import LearningSolver
|
||||||
|
from miplearn.problems.knapsack import MultiKnapsackGenerator, MultiKnapsackInstance
|
||||||
|
from scipy.stats import uniform, randint
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def test_knapsack_generator():
|
||||||
|
gen = MultiKnapsackGenerator(n=randint(low=100, high=101),
|
||||||
|
m=randint(low=30, high=31),
|
||||||
|
w=randint(low=0, high=1000),
|
||||||
|
K=randint(low=500, high=501),
|
||||||
|
u=uniform(loc=1.0, scale=1.0),
|
||||||
|
alpha=uniform(loc=0.50, scale=0.0),
|
||||||
|
)
|
||||||
|
instances = gen.generate(100)
|
||||||
|
w_sum = sum(instance.weights for instance in instances) / len(instances)
|
||||||
|
p_sum = sum(instance.prices for instance in instances) / len(instances)
|
||||||
|
b_sum = sum(instance.capacities for instance in instances) / len(instances)
|
||||||
|
assert round(np.mean(w_sum), -1) == 500.
|
||||||
|
assert round(np.mean(p_sum), -1) == 1250.
|
||||||
|
assert round(np.mean(b_sum), -3) == 25000.
|
||||||
|
|
||||||
|
|
||||||
|
def test_knapsack_instance():
|
||||||
|
instance = MultiKnapsackInstance(
|
||||||
|
prices=np.array([5.0, 10.0, 15.0]),
|
||||||
|
capacities=np.array([20.0, 30.0]),
|
||||||
|
weights=np.array([
|
||||||
|
[5.0, 5.0, 5.0],
|
||||||
|
[5.0, 10.0, 15.0],
|
||||||
|
])
|
||||||
|
)
|
||||||
|
|
||||||
|
assert (instance.get_instance_features() == np.array([
|
||||||
|
5.0, 10.0, 15.0, 20.0, 30.0, 5.0, 5.0, 5.0, 5.0, 10.0, 15.0
|
||||||
|
])).all()
|
||||||
|
|
||||||
|
solver = LearningSolver()
|
||||||
|
results = solver.solve(instance)
|
||||||
|
assert results["Problem"][0]["Lower bound"] == 30.0
|
Loading…
Reference in new issue