Julia: Implement more missing methods from JuMPSolver; test CPLEX

pull/3/head
Alinson S. Xavier 6 years ago
parent feaec32653
commit ad7a1839d4

@ -26,6 +26,12 @@ git-tree-sha1 = "62847acab40e6855a9b5905ccb99c2b5cf6b3ebb"
uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82"
version = "0.2.0"
[[CPLEX]]
deps = ["Libdl", "LinearAlgebra", "MathOptInterface", "MathProgBase", "SparseArrays"]
git-tree-sha1 = "f8dac98fbff2f7d7fe58fa1fcdbefaaaf29a1f59"
uuid = "a076750e-1247-5638-91d2-ce28b192dca0"
version = "0.6.5"
[[CPLEXW]]
deps = ["CEnum", "Libdl"]
git-tree-sha1 = "ebad297748ee2a12cc13b5fb07f9bbfa8a900494"

@ -4,6 +4,7 @@ authors = ["Alinson S Xavier <git@axavier.org>"]
version = "0.1.0"
[deps]
CPLEX = "a076750e-1247-5638-91d2-ce28b192dca0"
CPLEXW = "cfecb002-79c2-11e9-35be-cb59aa640f85"
Gurobi = "2e9cd046-0924-5485-92f1-d5272153d98b"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"

@ -6,7 +6,6 @@ __precompile__(false)
module MIPLearn
using JuMP
using Gurobi
using PyCall
using MathOptInterface
const MOI = MathOptInterface
@ -17,26 +16,44 @@ LearningSolver = miplearn.LearningSolver
InternalSolver = miplearn.solvers.internal.InternalSolver
@pydef mutable struct JuMPSolver <: InternalSolver
function __init__(self; optimizer=CPLEX.Optimizer)
self.optimizer = optimizer
end
function add_constraint(self, constraint)
@error "Not implemented"
end
function set_warm_start(self, solution)
for (varname, value) in solution
var = JuMP.variable_by_name(self.model, varname)
JuMP.set_start_value(var, value)
end
end
function clear_warm_start(self)
@error "Not implemented"
end
function fix(self, solution)
for (varname, value) in solution
var = JuMP.variable_by_name(self.model, varname)
JuMP.fix(var, value, force=true)
end
end
function set_instance(self, instance, model)
self.instance = instance
self.model = model
self.bin_vars = [var
for var in JuMP.all_variables(self.model)
if JuMP.is_binary(var)]
JuMP.set_optimizer(self.model, self.optimizer)
end
function solve(self; tee=false)
JuMP.set_optimizer(self.model, Gurobi.Optimizer)
JuMP.optimize!(self.model)
self._update_solution()
primal_bound = JuMP.objective_value(self.model)
dual_bound = JuMP.objective_bound(self.model)
@ -55,27 +72,54 @@ InternalSolver = miplearn.solvers.internal.InternalSolver
return Dict("Lower bound" => lower_bound,
"Upper bound" => upper_bound,
"Sense" => sense)
"Sense" => sense,
"Wallclock time" => JuMP.solve_time(self.model),
"Nodes" => 1,
"Log" => nothing,
"Warm start value" => nothing)
end
function solve_lp(self; tee=false)
for var in self.bin_vars
JuMP.unset_binary(var)
JuMP.set_upper_bound(var, 1.0)
JuMP.set_lower_bound(var, 0.0)
end
JuMP.optimize!(self.model)
obj_value = JuMP.objective_value(self.model)
self._update_solution()
for var in self.bin_vars
JuMP.set_binary(var)
end
return Dict("Optimal value" => obj_value)
end
function get_solution(self)
return Dict(JuMP.name(var) => JuMP.value(var)
for var in JuMP.all_variables(self.model))
return self.solution
end
function _update_solution(self)
self.solution = Dict(JuMP.name(var) => JuMP.value(var)
for var in JuMP.all_variables(self.model))
end
function set_gap_tolerance(self, gap_tolerance)
@error "Not implemented"
end
function set_node_limit(self)
@error "Not implemented"
end
function set_threads(self, threads)
@error "Not implemented"
end
function set_time_limit(self, time_limit)
JuMP.set_time_limit_sec(self.model, time_limit)
end
end

@ -0,0 +1,58 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Test
using MIPLearn
using CPLEX
using Gurobi
@testset "JuMPSolver" begin
for optimizer in [CPLEX.Optimizer, Gurobi.Optimizer]
instance = KnapsackInstance([23., 26., 20., 18.],
[505., 352., 458., 220.],
67.0)
model = instance.to_model()
solver = JuMPSolver(optimizer=optimizer)
solver.set_instance(instance, model)
solver.set_time_limit(30)
solver.set_warm_start(Dict(
"x[1]" => 1.0,
"x[2]" => 0.0,
"x[3]" => 0.0,
"x[4]" => 1.0,
))
stats = solver.solve()
@test stats["Lower bound"] == 1183.0
@test stats["Upper bound"] == 1183.0
@test stats["Sense"] == "max"
@test stats["Wallclock time"] > 0
solution = solver.get_solution()
@test solution["x[1]"] == 1.0
@test solution["x[2]"] == 0.0
@test solution["x[3]"] == 1.0
@test solution["x[4]"] == 1.0
stats = solver.solve_lp()
@test round(stats["Optimal value"], digits=3) == 1287.923
solution = solver.get_solution()
@test round(solution["x[1]"], digits=3) == 1.000
@test round(solution["x[2]"], digits=3) == 0.923
@test round(solution["x[3]"], digits=3) == 1.000
@test round(solution["x[4]"], digits=3) == 0.000
solver.fix(Dict(
"x[1]" => 1.0,
"x[2]" => 0.0,
"x[3]" => 0.0,
"x[4]" => 1.0,
))
stats = solver.solve()
@test stats["Lower bound"] == 725.0
@test stats["Upper bound"] == 725.0
end
end

@ -4,36 +4,9 @@
using Test
using MIPLearn
using CPLEX
using Gurobi
@testset "MIPLearn" begin
instance = KnapsackInstance([23., 26., 20., 18.],
[505., 352., 458., 220.],
67.0)
model = instance.to_model()
solver = JuMPSolver()
solver.set_instance(instance, model)
stats = solver.solve()
# assert len(stats["Log"]) > 100
@test stats["Lower bound"] == 1183.0
@test stats["Upper bound"] == 1183.0
@test stats["Sense"] == "max"
# @test isinstance(stats["Wallclock time"], float)
# @test isinstance(stats["Nodes"], int)
solution = solver.get_solution()
@test solution["x[1]"] == 1.0
@test solution["x[2]"] == 0.0
@test solution["x[3]"] == 1.0
@test solution["x[4]"] == 1.0
# stats = solver.solve_lp()
# @test round(stats["Optimal value"], 3) == 1287.923
#
# solution = solver.get_solution()
# @test round(solution["x"][0], 3) == 1.000
# @test round(solution["x"][1], 3) == 0.923
# @test round(solution["x"][2], 3) == 1.000
# @test round(solution["x"][3], 3) == 0.000
include("jump_solver.jl")
end
Loading…
Cancel
Save