mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Merge branch 'feature/convert-ineqs' into dev
This commit is contained in:
@@ -16,7 +16,11 @@ from .components.lazy_static import StaticLazyConstraintsComponent
|
||||
from .components.cuts import UserCutsComponent
|
||||
from .components.primal import PrimalSolutionComponent
|
||||
from .components.relaxation import RelaxationComponent
|
||||
from .components.steps.convert_tight import ConvertTightIneqsIntoEqsStep
|
||||
from .components.steps.relax_integrality import RelaxIntegralityStep
|
||||
from .components.steps.drop_redundant import DropRedundantInequalitiesStep
|
||||
|
||||
from .classifiers import Classifier, Regressor
|
||||
from .classifiers.adaptive import AdaptiveClassifier
|
||||
from .classifiers.threshold import MinPrecisionThreshold
|
||||
|
||||
|
||||
@@ -8,6 +8,7 @@ import pandas as pd
|
||||
import numpy as np
|
||||
import logging
|
||||
from tqdm.auto import tqdm
|
||||
import os
|
||||
|
||||
from .solvers.learning import LearningSolver
|
||||
|
||||
@@ -61,6 +62,7 @@ class BenchmarkRunner:
|
||||
return self.results
|
||||
|
||||
def save_results(self, filename):
|
||||
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
||||
self.results.to_csv(filename)
|
||||
|
||||
def load_results(self, filename):
|
||||
@@ -77,56 +79,36 @@ class BenchmarkRunner:
|
||||
def _push_result(self, result, solver, solver_name, instance):
|
||||
if self.results is None:
|
||||
self.results = pd.DataFrame(
|
||||
# Show the following columns first in the CSV file
|
||||
columns=[
|
||||
"Solver",
|
||||
"Instance",
|
||||
"Wallclock Time",
|
||||
"Lower Bound",
|
||||
"Upper Bound",
|
||||
"Gap",
|
||||
"Nodes",
|
||||
"Mode",
|
||||
"Sense",
|
||||
"Predicted LB",
|
||||
"Predicted UB",
|
||||
]
|
||||
)
|
||||
|
||||
lb = result["Lower bound"]
|
||||
ub = result["Upper bound"]
|
||||
gap = (ub - lb) / lb
|
||||
if "Predicted LB" not in result:
|
||||
result["Predicted LB"] = float("nan")
|
||||
result["Predicted UB"] = float("nan")
|
||||
self.results = self.results.append(
|
||||
{
|
||||
"Solver": solver_name,
|
||||
"Instance": instance,
|
||||
"Wallclock Time": result["Wallclock time"],
|
||||
"Lower Bound": lb,
|
||||
"Upper Bound": ub,
|
||||
"Gap": gap,
|
||||
"Nodes": result["Nodes"],
|
||||
"Mode": solver.mode,
|
||||
"Sense": result["Sense"],
|
||||
"Predicted LB": result["Predicted LB"],
|
||||
"Predicted UB": result["Predicted UB"],
|
||||
},
|
||||
ignore_index=True,
|
||||
)
|
||||
result["Solver"] = solver_name
|
||||
result["Instance"] = instance
|
||||
result["Gap"] = (ub - lb) / lb
|
||||
result["Mode"] = solver.mode
|
||||
self.results = self.results.append(pd.DataFrame([result]))
|
||||
|
||||
# Compute relative statistics
|
||||
groups = self.results.groupby("Instance")
|
||||
best_lower_bound = groups["Lower Bound"].transform("max")
|
||||
best_upper_bound = groups["Upper Bound"].transform("min")
|
||||
best_lower_bound = groups["Lower bound"].transform("max")
|
||||
best_upper_bound = groups["Upper bound"].transform("min")
|
||||
best_gap = groups["Gap"].transform("min")
|
||||
best_nodes = np.maximum(1, groups["Nodes"].transform("min"))
|
||||
best_wallclock_time = groups["Wallclock Time"].transform("min")
|
||||
self.results["Relative Lower Bound"] = (
|
||||
self.results["Lower Bound"] / best_lower_bound
|
||||
best_wallclock_time = groups["Wallclock time"].transform("min")
|
||||
self.results["Relative lower bound"] = (
|
||||
self.results["Lower bound"] / best_lower_bound
|
||||
)
|
||||
self.results["Relative Upper Bound"] = (
|
||||
self.results["Upper Bound"] / best_upper_bound
|
||||
self.results["Relative upper bound"] = (
|
||||
self.results["Upper bound"] / best_upper_bound
|
||||
)
|
||||
self.results["Relative Wallclock Time"] = (
|
||||
self.results["Wallclock Time"] / best_wallclock_time
|
||||
self.results["Relative wallclock time"] = (
|
||||
self.results["Wallclock time"] / best_wallclock_time
|
||||
)
|
||||
self.results["Relative Gap"] = self.results["Gap"] / best_gap
|
||||
self.results["Relative Nodes"] = self.results["Nodes"] / best_nodes
|
||||
@@ -143,12 +125,12 @@ class BenchmarkRunner:
|
||||
|
||||
sense = results.loc[0, "Sense"]
|
||||
if sense == "min":
|
||||
primal_column = "Relative Upper Bound"
|
||||
obj_column = "Upper Bound"
|
||||
primal_column = "Relative upper bound"
|
||||
obj_column = "Upper bound"
|
||||
predicted_obj_column = "Predicted UB"
|
||||
else:
|
||||
primal_column = "Relative Lower Bound"
|
||||
obj_column = "Lower Bound"
|
||||
primal_column = "Relative lower bound"
|
||||
obj_column = "Lower bound"
|
||||
predicted_obj_column = "Predicted LB"
|
||||
|
||||
fig, (ax1, ax2, ax3, ax4) = plt.subplots(
|
||||
@@ -158,10 +140,10 @@ class BenchmarkRunner:
|
||||
gridspec_kw={"width_ratios": [2, 1, 1, 2]},
|
||||
)
|
||||
|
||||
# Figure 1: Solver x Wallclock Time
|
||||
# Figure 1: Solver x Wallclock time
|
||||
sns.stripplot(
|
||||
x="Solver",
|
||||
y="Wallclock Time",
|
||||
y="Wallclock time",
|
||||
data=results,
|
||||
ax=ax1,
|
||||
jitter=0.25,
|
||||
@@ -169,14 +151,14 @@ class BenchmarkRunner:
|
||||
)
|
||||
sns.barplot(
|
||||
x="Solver",
|
||||
y="Wallclock Time",
|
||||
y="Wallclock time",
|
||||
data=results,
|
||||
ax=ax1,
|
||||
errwidth=0.0,
|
||||
alpha=0.4,
|
||||
estimator=median,
|
||||
)
|
||||
ax1.set(ylabel="Wallclock Time (s)")
|
||||
ax1.set(ylabel="Wallclock time (s)")
|
||||
|
||||
# Figure 2: Solver x Gap (%)
|
||||
ax2.set_ylim(-0.5, 5.5)
|
||||
|
||||
@@ -3,16 +3,54 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
|
||||
class Component:
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
class Component(ABC):
|
||||
"""
|
||||
A Component is an object which adds functionality to a LearningSolver.
|
||||
|
||||
For better code maintainability, LearningSolver simply delegates most of its
|
||||
functionality to Components. Each Component is responsible for exactly one ML
|
||||
strategy.
|
||||
"""
|
||||
|
||||
def before_solve(self, solver, instance, model):
|
||||
return
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
return
|
||||
@abstractmethod
|
||||
def after_solve(
|
||||
self,
|
||||
solver,
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
training_data,
|
||||
):
|
||||
"""
|
||||
Method called by LearningSolver after the problem is solved to optimality.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
solver: LearningSolver
|
||||
The solver calling this method.
|
||||
instance: Instance
|
||||
The instance being solved.
|
||||
model:
|
||||
The concrete optimization model being solved.
|
||||
stats: dict
|
||||
A dictionary containing statistics about the solution process, such as
|
||||
number of nodes explored and running time. Components are free to add their own
|
||||
statistics here. For example, PrimalSolutionComponent adds statistics regarding
|
||||
the number of predicted variables. All statistics in this dictionary are exported
|
||||
to the benchmark CSV file.
|
||||
training_data: dict
|
||||
A dictionary containing data that may be useful for training machine learning
|
||||
models and accelerating the solution process. Components are free to add their
|
||||
own training data here. For example, PrimalSolutionComponent adds the current
|
||||
primal solution. The data must be pickable.
|
||||
"""
|
||||
pass
|
||||
|
||||
def fit(self, training_instances):
|
||||
return
|
||||
|
||||
@@ -25,9 +25,16 @@ class CompositeComponent(Component):
|
||||
for child in self.children:
|
||||
child.before_solve(solver, instance, model)
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
def after_solve(
|
||||
self,
|
||||
solver,
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
training_data,
|
||||
):
|
||||
for child in self.children:
|
||||
child.after_solve(solver, instance, model, results)
|
||||
child.after_solve(solver, instance, model, stats, training_data)
|
||||
|
||||
def fit(self, training_instances):
|
||||
for child in self.children:
|
||||
|
||||
@@ -40,7 +40,14 @@ class UserCutsComponent(Component):
|
||||
cut = instance.build_user_cut(model, v)
|
||||
solver.internal_solver.add_constraint(cut)
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
def after_solve(
|
||||
self,
|
||||
solver,
|
||||
instance,
|
||||
model,
|
||||
results,
|
||||
training_data,
|
||||
):
|
||||
pass
|
||||
|
||||
def fit(self, training_instances):
|
||||
|
||||
@@ -52,7 +52,14 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
solver.internal_solver.add_constraint(cut)
|
||||
return True
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
def after_solve(
|
||||
self,
|
||||
solver,
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
training_data,
|
||||
):
|
||||
pass
|
||||
|
||||
def fit(self, training_instances):
|
||||
@@ -61,7 +68,7 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
|
||||
self.classifiers = {}
|
||||
violation_to_instance_idx = {}
|
||||
for (idx, instance) in enumerate(training_instances):
|
||||
for (idx, instance) in enumerate(InstanceIterator(training_instances)):
|
||||
for v in instance.found_violated_lazy_constraints:
|
||||
if isinstance(v, list):
|
||||
v = tuple(v)
|
||||
|
||||
@@ -49,7 +49,14 @@ class StaticLazyConstraintsComponent(Component):
|
||||
if instance.has_static_lazy_constraints():
|
||||
self._extract_and_predict_static(solver, instance)
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
def after_solve(
|
||||
self,
|
||||
solver,
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
training_data,
|
||||
):
|
||||
pass
|
||||
|
||||
def iteration_cb(self, solver, instance, model):
|
||||
|
||||
@@ -36,13 +36,20 @@ class ObjectiveValueComponent(Component):
|
||||
instance.predicted_lb = lb
|
||||
logger.info("Predicted values: lb=%.2f, ub=%.2f" % (lb, ub))
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
def after_solve(
|
||||
self,
|
||||
solver,
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
training_data,
|
||||
):
|
||||
if self.ub_regressor is not None:
|
||||
results["Predicted UB"] = instance.predicted_ub
|
||||
results["Predicted LB"] = instance.predicted_lb
|
||||
stats["Predicted UB"] = instance.predicted_ub
|
||||
stats["Predicted LB"] = instance.predicted_lb
|
||||
else:
|
||||
results["Predicted UB"] = None
|
||||
results["Predicted LB"] = None
|
||||
stats["Predicted UB"] = None
|
||||
stats["Predicted LB"] = None
|
||||
|
||||
def fit(self, training_instances):
|
||||
logger.debug("Extracting features...")
|
||||
|
||||
@@ -39,7 +39,14 @@ class PrimalSolutionComponent(Component):
|
||||
else:
|
||||
solver.internal_solver.set_warm_start(solution)
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
def after_solve(
|
||||
self,
|
||||
solver,
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
training_data,
|
||||
):
|
||||
pass
|
||||
|
||||
def x(self, training_instances):
|
||||
|
||||
@@ -3,19 +3,13 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
import sys
|
||||
import numpy as np
|
||||
|
||||
from copy import deepcopy
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from miplearn import Component
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.composite import CompositeComponent
|
||||
from miplearn.components.lazy_static import LazyConstraint
|
||||
from miplearn.extractors import InstanceIterator
|
||||
from miplearn.components.steps.convert_tight import ConvertTightIneqsIntoEqsStep
|
||||
from miplearn.components.steps.drop_redundant import DropRedundantInequalitiesStep
|
||||
from miplearn.components.steps.relax_integrality import RelaxIntegralityStep
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -23,23 +17,26 @@ logger = logging.getLogger(__name__)
|
||||
class RelaxationComponent(Component):
|
||||
"""
|
||||
A Component that tries to build a relaxation that is simultaneously strong and easy
|
||||
to solve.
|
||||
to solve. Currently, this component is composed by three steps:
|
||||
|
||||
Currently, this component performs the following operations:
|
||||
- Drops all integrality constraints
|
||||
- Drops all inequality constraints that are not likely to be binding.
|
||||
|
||||
In future versions of MIPLearn, this component may keep some integrality constraints
|
||||
and perform other operations.
|
||||
- RelaxIntegralityStep
|
||||
- DropRedundantInequalitiesStep
|
||||
- ConvertTightIneqsIntoEqsStep
|
||||
|
||||
Parameters
|
||||
----------
|
||||
classifier : Classifier, optional
|
||||
Classifier used to predict whether each constraint is binding or not. One deep
|
||||
redundant_classifier : Classifier, optional
|
||||
Classifier used to predict if a constraint is likely redundant. One deep
|
||||
copy of this classifier is made for each constraint category.
|
||||
threshold : float, optional
|
||||
If the probability that a constraint is binding exceeds this threshold, the
|
||||
redundant_threshold : float, optional
|
||||
If the probability that a constraint is redundant exceeds this threshold, the
|
||||
constraint is dropped from the linear relaxation.
|
||||
tight_classifier : Classifier, optional
|
||||
Classifier used to predict if a constraint is likely to be tight. One deep
|
||||
copy of this classifier is made for each constraint category.
|
||||
tight_threshold : float, optional
|
||||
If the probability that a constraint is tight exceeds this threshold, the
|
||||
constraint is converted into an equality constraint.
|
||||
slack_tolerance : float, optional
|
||||
If a constraint has slack greater than this threshold, then the constraint is
|
||||
considered loose. By default, this threshold equals a small positive number to
|
||||
@@ -52,30 +49,37 @@ class RelaxationComponent(Component):
|
||||
violation_tolerance : float, optional
|
||||
If `check_dropped` is true, a constraint is considered satisfied during the
|
||||
check if its violation is smaller than this tolerance.
|
||||
max_iterations : int
|
||||
max_check_iterations : int
|
||||
If `check_dropped` is true, set the maximum number of iterations in the lazy
|
||||
constraint loop.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
classifier=CountingClassifier(),
|
||||
threshold=0.95,
|
||||
redundant_classifier=CountingClassifier(),
|
||||
redundant_threshold=0.95,
|
||||
tight_classifier=CountingClassifier(),
|
||||
tight_threshold=0.95,
|
||||
slack_tolerance=1e-5,
|
||||
check_dropped=False,
|
||||
violation_tolerance=1e-5,
|
||||
max_iterations=3,
|
||||
max_check_iterations=3,
|
||||
):
|
||||
self.steps = [
|
||||
RelaxIntegralityStep(),
|
||||
DropRedundantInequalitiesStep(
|
||||
classifier=classifier,
|
||||
threshold=threshold,
|
||||
classifier=redundant_classifier,
|
||||
threshold=redundant_threshold,
|
||||
slack_tolerance=slack_tolerance,
|
||||
violation_tolerance=violation_tolerance,
|
||||
max_iterations=max_iterations,
|
||||
max_iterations=max_check_iterations,
|
||||
check_dropped=check_dropped,
|
||||
),
|
||||
ConvertTightIneqsIntoEqsStep(
|
||||
classifier=tight_classifier,
|
||||
threshold=tight_threshold,
|
||||
slack_tolerance=slack_tolerance,
|
||||
),
|
||||
]
|
||||
self.composite = CompositeComponent(self.steps)
|
||||
|
||||
@@ -90,170 +94,3 @@ class RelaxationComponent(Component):
|
||||
|
||||
def iteration_cb(self, solver, instance, model):
|
||||
return self.composite.iteration_cb(solver, instance, model)
|
||||
|
||||
|
||||
class RelaxIntegralityStep(Component):
|
||||
def before_solve(self, solver, instance, _):
|
||||
logger.info("Relaxing integrality...")
|
||||
solver.internal_solver.relax()
|
||||
|
||||
|
||||
class DropRedundantInequalitiesStep(Component):
|
||||
def __init__(
|
||||
self,
|
||||
classifier=CountingClassifier(),
|
||||
threshold=0.95,
|
||||
slack_tolerance=1e-5,
|
||||
check_dropped=False,
|
||||
violation_tolerance=1e-5,
|
||||
max_iterations=3,
|
||||
):
|
||||
self.classifiers = {}
|
||||
self.classifier_prototype = classifier
|
||||
self.threshold = threshold
|
||||
self.slack_tolerance = slack_tolerance
|
||||
self.pool = []
|
||||
self.check_dropped = check_dropped
|
||||
self.violation_tolerance = violation_tolerance
|
||||
self.max_iterations = max_iterations
|
||||
self.current_iteration = 0
|
||||
|
||||
def before_solve(self, solver, instance, _):
|
||||
self.current_iteration = 0
|
||||
|
||||
logger.info("Predicting redundant LP constraints...")
|
||||
cids = solver.internal_solver.get_constraint_ids()
|
||||
x, constraints = self.x(
|
||||
[instance],
|
||||
constraint_ids=cids,
|
||||
return_constraints=True,
|
||||
)
|
||||
y = self.predict(x)
|
||||
for category in y.keys():
|
||||
for i in range(len(y[category])):
|
||||
if y[category][i][0] == 1:
|
||||
cid = constraints[category][i]
|
||||
c = LazyConstraint(
|
||||
cid=cid,
|
||||
obj=solver.internal_solver.extract_constraint(cid),
|
||||
)
|
||||
self.pool += [c]
|
||||
logger.info("Extracted %d predicted constraints" % len(self.pool))
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
instance.slacks = solver.internal_solver.get_constraint_slacks()
|
||||
|
||||
def fit(self, training_instances):
|
||||
logger.debug("Extracting x and y...")
|
||||
x = self.x(training_instances)
|
||||
y = self.y(training_instances)
|
||||
logger.debug("Fitting...")
|
||||
for category in tqdm(x.keys(), desc="Fit (rlx:drop_ineq)"):
|
||||
if category not in self.classifiers:
|
||||
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
||||
self.classifiers[category].fit(x[category], y[category])
|
||||
|
||||
def x(self, instances, constraint_ids=None, return_constraints=False):
|
||||
x = {}
|
||||
constraints = {}
|
||||
for instance in tqdm(
|
||||
InstanceIterator(instances),
|
||||
desc="Extract (rlx:drop_ineq:x)",
|
||||
disable=len(instances) < 5,
|
||||
):
|
||||
if constraint_ids is not None:
|
||||
cids = constraint_ids
|
||||
else:
|
||||
cids = instance.slacks.keys()
|
||||
for cid in cids:
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
constraints[category] = []
|
||||
x[category] += [instance.get_constraint_features(cid)]
|
||||
constraints[category] += [cid]
|
||||
if return_constraints:
|
||||
return x, constraints
|
||||
else:
|
||||
return x
|
||||
|
||||
def y(self, instances):
|
||||
y = {}
|
||||
for instance in tqdm(
|
||||
InstanceIterator(instances),
|
||||
desc="Extract (rlx:drop_ineq:y)",
|
||||
disable=len(instances) < 5,
|
||||
):
|
||||
for (cid, slack) in instance.slacks.items():
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in y:
|
||||
y[category] = []
|
||||
if slack > self.slack_tolerance:
|
||||
y[category] += [[1]]
|
||||
else:
|
||||
y[category] += [[0]]
|
||||
return y
|
||||
|
||||
def predict(self, x):
|
||||
y = {}
|
||||
for (category, x_cat) in x.items():
|
||||
if category not in self.classifiers:
|
||||
continue
|
||||
y[category] = []
|
||||
# x_cat = np.array(x_cat)
|
||||
proba = self.classifiers[category].predict_proba(x_cat)
|
||||
for i in range(len(proba)):
|
||||
if proba[i][1] >= self.threshold:
|
||||
y[category] += [[1]]
|
||||
else:
|
||||
y[category] += [[0]]
|
||||
return y
|
||||
|
||||
def evaluate(self, instance):
|
||||
x = self.x([instance])
|
||||
y_true = self.y([instance])
|
||||
y_pred = self.predict(x)
|
||||
tp, tn, fp, fn = 0, 0, 0, 0
|
||||
for category in y_true.keys():
|
||||
for i in range(len(y_true[category])):
|
||||
if y_pred[category][i][0] == 1:
|
||||
if y_true[category][i][0] == 1:
|
||||
tp += 1
|
||||
else:
|
||||
fp += 1
|
||||
else:
|
||||
if y_true[category][i][0] == 1:
|
||||
fn += 1
|
||||
else:
|
||||
tn += 1
|
||||
return classifier_evaluation_dict(tp, tn, fp, fn)
|
||||
|
||||
def iteration_cb(self, solver, instance, model):
|
||||
if not self.check_dropped:
|
||||
return False
|
||||
if self.current_iteration >= self.max_iterations:
|
||||
return False
|
||||
self.current_iteration += 1
|
||||
logger.debug("Checking that dropped constraints are satisfied...")
|
||||
constraints_to_add = []
|
||||
for c in self.pool:
|
||||
if not solver.internal_solver.is_constraint_satisfied(
|
||||
c.obj,
|
||||
self.violation_tolerance,
|
||||
):
|
||||
constraints_to_add.append(c)
|
||||
for c in constraints_to_add:
|
||||
self.pool.remove(c)
|
||||
solver.internal_solver.add_constraint(c.obj)
|
||||
if len(constraints_to_add) > 0:
|
||||
logger.info(
|
||||
"%8d constraints %8d in the pool"
|
||||
% (len(constraints_to_add), len(self.pool))
|
||||
)
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
0
miplearn/components/steps/__init__.py
Normal file
0
miplearn/components/steps/__init__.py
Normal file
214
miplearn/components/steps/convert_tight.py
Normal file
214
miplearn/components/steps/convert_tight.py
Normal file
@@ -0,0 +1,214 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
import random
|
||||
|
||||
from ... import Component
|
||||
from ...classifiers.counting import CountingClassifier
|
||||
from ...components import classifier_evaluation_dict
|
||||
from ...extractors import InstanceIterator
|
||||
from .drop_redundant import DropRedundantInequalitiesStep
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ConvertTightIneqsIntoEqsStep(Component):
|
||||
"""
|
||||
Component that predicts which inequality constraints are likely to be binding in
|
||||
the LP relaxation of the problem and converts them into equality constraints.
|
||||
|
||||
This component always makes sure that the conversion process does not affect the
|
||||
feasibility of the problem. It can also, optionally, make sure that it does not affect
|
||||
the optimality, but this may be expensive.
|
||||
|
||||
This component does not work on MIPs. All integrality constraints must be relaxed
|
||||
before this component is used.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
classifier=CountingClassifier(),
|
||||
threshold=0.95,
|
||||
slack_tolerance=0.0,
|
||||
check_optimality=False,
|
||||
):
|
||||
self.classifiers = {}
|
||||
self.classifier_prototype = classifier
|
||||
self.threshold = threshold
|
||||
self.slack_tolerance = slack_tolerance
|
||||
self.check_optimality = check_optimality
|
||||
self.converted = []
|
||||
self.original_sense = {}
|
||||
|
||||
def before_solve(self, solver, instance, _):
|
||||
logger.info("Predicting tight LP constraints...")
|
||||
x, constraints = DropRedundantInequalitiesStep._x_test(
|
||||
instance,
|
||||
constraint_ids=solver.internal_solver.get_constraint_ids(),
|
||||
)
|
||||
y = self.predict(x)
|
||||
|
||||
self.n_converted = 0
|
||||
self.n_restored = 0
|
||||
self.n_kept = 0
|
||||
self.n_infeasible_iterations = 0
|
||||
self.n_suboptimal_iterations = 0
|
||||
for category in y.keys():
|
||||
for i in range(len(y[category])):
|
||||
if y[category][i][0] == 1:
|
||||
cid = constraints[category][i]
|
||||
s = solver.internal_solver.get_constraint_sense(cid)
|
||||
self.original_sense[cid] = s
|
||||
solver.internal_solver.set_constraint_sense(cid, "=")
|
||||
self.converted += [cid]
|
||||
self.n_converted += 1
|
||||
else:
|
||||
self.n_kept += 1
|
||||
|
||||
logger.info(f"Converted {self.n_converted} inequalities")
|
||||
|
||||
def after_solve(
|
||||
self,
|
||||
solver,
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
training_data,
|
||||
):
|
||||
if "slacks" not in training_data.keys():
|
||||
training_data["slacks"] = solver.internal_solver.get_inequality_slacks()
|
||||
stats["ConvertTight: Kept"] = self.n_kept
|
||||
stats["ConvertTight: Converted"] = self.n_converted
|
||||
stats["ConvertTight: Restored"] = self.n_restored
|
||||
stats["ConvertTight: Inf iterations"] = self.n_infeasible_iterations
|
||||
stats["ConvertTight: Subopt iterations"] = self.n_suboptimal_iterations
|
||||
|
||||
def fit(self, training_instances):
|
||||
logger.debug("Extracting x and y...")
|
||||
x = self.x(training_instances)
|
||||
y = self.y(training_instances)
|
||||
logger.debug("Fitting...")
|
||||
for category in tqdm(x.keys(), desc="Fit (rlx:conv_ineqs)"):
|
||||
if category not in self.classifiers:
|
||||
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
||||
self.classifiers[category].fit(x[category], y[category])
|
||||
|
||||
def x(self, instances):
|
||||
return DropRedundantInequalitiesStep._x_train(instances)
|
||||
|
||||
def y(self, instances):
|
||||
y = {}
|
||||
for instance in tqdm(
|
||||
InstanceIterator(instances),
|
||||
desc="Extract (rlx:conv_ineqs:y)",
|
||||
disable=len(instances) < 5,
|
||||
):
|
||||
for (cid, slack) in instance.training_data[0]["slacks"].items():
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in y:
|
||||
y[category] = []
|
||||
if 0 <= slack <= self.slack_tolerance:
|
||||
y[category] += [[1]]
|
||||
else:
|
||||
y[category] += [[0]]
|
||||
return y
|
||||
|
||||
def predict(self, x):
|
||||
y = {}
|
||||
for (category, x_cat) in x.items():
|
||||
if category not in self.classifiers:
|
||||
continue
|
||||
y[category] = []
|
||||
x_cat = np.array(x_cat)
|
||||
proba = self.classifiers[category].predict_proba(x_cat)
|
||||
for i in range(len(proba)):
|
||||
if proba[i][1] >= self.threshold:
|
||||
y[category] += [[1]]
|
||||
else:
|
||||
y[category] += [[0]]
|
||||
return y
|
||||
|
||||
def evaluate(self, instance):
|
||||
x = self.x([instance])
|
||||
y_true = self.y([instance])
|
||||
y_pred = self.predict(x)
|
||||
tp, tn, fp, fn = 0, 0, 0, 0
|
||||
for category in y_true.keys():
|
||||
for i in range(len(y_true[category])):
|
||||
if y_pred[category][i][0] == 1:
|
||||
if y_true[category][i][0] == 1:
|
||||
tp += 1
|
||||
else:
|
||||
fp += 1
|
||||
else:
|
||||
if y_true[category][i][0] == 1:
|
||||
fn += 1
|
||||
else:
|
||||
tn += 1
|
||||
return classifier_evaluation_dict(tp, tn, fp, fn)
|
||||
|
||||
def iteration_cb(self, solver, instance, model):
|
||||
is_infeasible, is_suboptimal = False, False
|
||||
restored = []
|
||||
|
||||
def check_pi(msense, csense, pi):
|
||||
if csense == "=":
|
||||
return True
|
||||
if msense == "max":
|
||||
if csense == "<":
|
||||
return pi >= 0
|
||||
else:
|
||||
return pi <= 0
|
||||
else:
|
||||
if csense == ">":
|
||||
return pi >= 0
|
||||
else:
|
||||
return pi <= 0
|
||||
|
||||
def restore(cid):
|
||||
nonlocal restored
|
||||
csense = self.original_sense[cid]
|
||||
solver.internal_solver.set_constraint_sense(cid, csense)
|
||||
restored += [cid]
|
||||
|
||||
if solver.internal_solver.is_infeasible():
|
||||
for cid in self.converted:
|
||||
pi = solver.internal_solver.get_dual(cid)
|
||||
if abs(pi) > 0:
|
||||
is_infeasible = True
|
||||
restore(cid)
|
||||
elif self.check_optimality:
|
||||
random.shuffle(self.converted)
|
||||
n_restored = 0
|
||||
for cid in self.converted:
|
||||
if n_restored >= 100:
|
||||
break
|
||||
pi = solver.internal_solver.get_dual(cid)
|
||||
csense = self.original_sense[cid]
|
||||
msense = solver.internal_solver.get_sense()
|
||||
if not check_pi(msense, csense, pi):
|
||||
is_suboptimal = True
|
||||
restore(cid)
|
||||
n_restored += 1
|
||||
|
||||
for cid in restored:
|
||||
self.converted.remove(cid)
|
||||
|
||||
if len(restored) > 0:
|
||||
self.n_restored += len(restored)
|
||||
if is_infeasible:
|
||||
self.n_infeasible_iterations += 1
|
||||
if is_suboptimal:
|
||||
self.n_suboptimal_iterations += 1
|
||||
logger.info(f"Restored {len(restored)} inequalities")
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
228
miplearn/components/steps/drop_redundant.py
Normal file
228
miplearn/components/steps/drop_redundant.py
Normal file
@@ -0,0 +1,228 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from miplearn import Component
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.lazy_static import LazyConstraint
|
||||
from miplearn.extractors import InstanceIterator
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class DropRedundantInequalitiesStep(Component):
|
||||
"""
|
||||
Component that predicts which inequalities are likely loose in the LP and removes
|
||||
them. Optionally, double checks after the problem is solved that all dropped
|
||||
inequalities were in fact redundant, and, if not, re-adds them to the problem.
|
||||
|
||||
This component does not work on MIPs. All integrality constraints must be relaxed
|
||||
before this component is used.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
classifier=CountingClassifier(),
|
||||
threshold=0.95,
|
||||
slack_tolerance=1e-5,
|
||||
check_feasibility=False,
|
||||
violation_tolerance=1e-5,
|
||||
max_iterations=3,
|
||||
):
|
||||
self.classifiers = {}
|
||||
self.classifier_prototype = classifier
|
||||
self.threshold = threshold
|
||||
self.slack_tolerance = slack_tolerance
|
||||
self.pool = []
|
||||
self.check_feasibility = check_feasibility
|
||||
self.violation_tolerance = violation_tolerance
|
||||
self.max_iterations = max_iterations
|
||||
self.current_iteration = 0
|
||||
|
||||
def before_solve(self, solver, instance, _):
|
||||
self.current_iteration = 0
|
||||
|
||||
logger.info("Predicting redundant LP constraints...")
|
||||
x, constraints = self._x_test(
|
||||
instance,
|
||||
constraint_ids=solver.internal_solver.get_constraint_ids(),
|
||||
)
|
||||
y = self.predict(x)
|
||||
|
||||
self.total_dropped = 0
|
||||
self.total_restored = 0
|
||||
self.total_kept = 0
|
||||
self.total_iterations = 0
|
||||
for category in y.keys():
|
||||
for i in range(len(y[category])):
|
||||
if y[category][i][0] == 1:
|
||||
cid = constraints[category][i]
|
||||
c = LazyConstraint(
|
||||
cid=cid,
|
||||
obj=solver.internal_solver.extract_constraint(cid),
|
||||
)
|
||||
self.pool += [c]
|
||||
self.total_dropped += 1
|
||||
else:
|
||||
self.total_kept += 1
|
||||
logger.info(f"Extracted {self.total_dropped} predicted constraints")
|
||||
|
||||
def after_solve(
|
||||
self,
|
||||
solver,
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
training_data,
|
||||
):
|
||||
if "slacks" not in training_data.keys():
|
||||
training_data["slacks"] = solver.internal_solver.get_inequality_slacks()
|
||||
stats.update(
|
||||
{
|
||||
"DropRedundant: Kept": self.total_kept,
|
||||
"DropRedundant: Dropped": self.total_dropped,
|
||||
"DropRedundant: Restored": self.total_restored,
|
||||
"DropRedundant: Iterations": self.total_iterations,
|
||||
}
|
||||
)
|
||||
|
||||
def fit(self, training_instances):
|
||||
logger.debug("Extracting x and y...")
|
||||
x = self.x(training_instances)
|
||||
y = self.y(training_instances)
|
||||
logger.debug("Fitting...")
|
||||
for category in tqdm(x.keys(), desc="Fit (rlx:drop_ineq)"):
|
||||
if category not in self.classifiers:
|
||||
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
||||
self.classifiers[category].fit(x[category], y[category])
|
||||
|
||||
@staticmethod
|
||||
def _x_test(instance, constraint_ids):
|
||||
x = {}
|
||||
constraints = {}
|
||||
cids = constraint_ids
|
||||
for cid in cids:
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
constraints[category] = []
|
||||
x[category] += [instance.get_constraint_features(cid)]
|
||||
constraints[category] += [cid]
|
||||
for category in x.keys():
|
||||
x[category] = np.array(x[category])
|
||||
return x, constraints
|
||||
|
||||
@staticmethod
|
||||
def _x_train(instances):
|
||||
x = {}
|
||||
for instance in tqdm(
|
||||
InstanceIterator(instances),
|
||||
desc="Extract (rlx:drop_ineq:x)",
|
||||
disable=len(instances) < 5,
|
||||
):
|
||||
for training_data in instance.training_data:
|
||||
cids = training_data["slacks"].keys()
|
||||
for cid in cids:
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
x[category] += [instance.get_constraint_features(cid)]
|
||||
for category in x.keys():
|
||||
x[category] = np.array(x[category])
|
||||
return x
|
||||
|
||||
def x(self, instances):
|
||||
return self._x_train(instances)
|
||||
|
||||
def y(self, instances):
|
||||
y = {}
|
||||
for instance in tqdm(
|
||||
InstanceIterator(instances),
|
||||
desc="Extract (rlx:drop_ineq:y)",
|
||||
disable=len(instances) < 5,
|
||||
):
|
||||
for training_data in instance.training_data:
|
||||
for (cid, slack) in training_data["slacks"].items():
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in y:
|
||||
y[category] = []
|
||||
if slack > self.slack_tolerance:
|
||||
y[category] += [[1]]
|
||||
else:
|
||||
y[category] += [[0]]
|
||||
return y
|
||||
|
||||
def predict(self, x):
|
||||
y = {}
|
||||
for (category, x_cat) in x.items():
|
||||
if category not in self.classifiers:
|
||||
continue
|
||||
y[category] = []
|
||||
x_cat = np.array(x_cat)
|
||||
proba = self.classifiers[category].predict_proba(x_cat)
|
||||
for i in range(len(proba)):
|
||||
if proba[i][1] >= self.threshold:
|
||||
y[category] += [[1]]
|
||||
else:
|
||||
y[category] += [[0]]
|
||||
return y
|
||||
|
||||
def evaluate(self, instance):
|
||||
x = self.x([instance])
|
||||
y_true = self.y([instance])
|
||||
y_pred = self.predict(x)
|
||||
tp, tn, fp, fn = 0, 0, 0, 0
|
||||
for category in y_true.keys():
|
||||
for i in range(len(y_true[category])):
|
||||
if y_pred[category][i][0] == 1:
|
||||
if y_true[category][i][0] == 1:
|
||||
tp += 1
|
||||
else:
|
||||
fp += 1
|
||||
else:
|
||||
if y_true[category][i][0] == 1:
|
||||
fn += 1
|
||||
else:
|
||||
tn += 1
|
||||
return classifier_evaluation_dict(tp, tn, fp, fn)
|
||||
|
||||
def iteration_cb(self, solver, instance, model):
|
||||
if not self.check_feasibility:
|
||||
return False
|
||||
if self.current_iteration >= self.max_iterations:
|
||||
return False
|
||||
self.current_iteration += 1
|
||||
logger.debug("Checking that dropped constraints are satisfied...")
|
||||
constraints_to_add = []
|
||||
for c in self.pool:
|
||||
if not solver.internal_solver.is_constraint_satisfied(
|
||||
c.obj,
|
||||
self.violation_tolerance,
|
||||
):
|
||||
constraints_to_add.append(c)
|
||||
for c in constraints_to_add:
|
||||
self.pool.remove(c)
|
||||
solver.internal_solver.add_constraint(c.obj)
|
||||
if len(constraints_to_add) > 0:
|
||||
self.total_restored += len(constraints_to_add)
|
||||
logger.info(
|
||||
"%8d constraints %8d in the pool"
|
||||
% (len(constraints_to_add), len(self.pool))
|
||||
)
|
||||
self.total_iterations += 1
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
29
miplearn/components/steps/relax_integrality.py
Normal file
29
miplearn/components/steps/relax_integrality.py
Normal file
@@ -0,0 +1,29 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
|
||||
from miplearn import Component
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RelaxIntegralityStep(Component):
|
||||
"""
|
||||
Component that relaxes all integrality constraints before the problem is solved.
|
||||
"""
|
||||
|
||||
def before_solve(self, solver, instance, _):
|
||||
logger.info("Relaxing integrality...")
|
||||
solver.internal_solver.relax()
|
||||
|
||||
def after_solve(
|
||||
self,
|
||||
solver,
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
training_data,
|
||||
):
|
||||
return
|
||||
0
miplearn/components/steps/tests/__init__.py
Normal file
0
miplearn/components/steps/tests/__init__.py
Normal file
121
miplearn/components/steps/tests/test_convert_tight.py
Normal file
121
miplearn/components/steps/tests/test_convert_tight.py
Normal file
@@ -0,0 +1,121 @@
|
||||
from miplearn import LearningSolver, GurobiSolver, Instance, Classifier
|
||||
from miplearn.components.steps.convert_tight import ConvertTightIneqsIntoEqsStep
|
||||
from miplearn.components.steps.relax_integrality import RelaxIntegralityStep
|
||||
from miplearn.problems.knapsack import GurobiKnapsackInstance
|
||||
|
||||
from unittest.mock import Mock
|
||||
|
||||
|
||||
def test_convert_tight_usage():
|
||||
instance = GurobiKnapsackInstance(
|
||||
weights=[3.0, 5.0, 10.0],
|
||||
prices=[1.0, 1.0, 1.0],
|
||||
capacity=16.0,
|
||||
)
|
||||
solver = LearningSolver(
|
||||
solver=GurobiSolver(),
|
||||
components=[
|
||||
RelaxIntegralityStep(),
|
||||
ConvertTightIneqsIntoEqsStep(),
|
||||
],
|
||||
)
|
||||
|
||||
# Solve original problem
|
||||
solver.solve(instance)
|
||||
original_upper_bound = instance.upper_bound
|
||||
|
||||
# Should collect training data
|
||||
assert instance.training_data[0]["slacks"]["eq_capacity"] == 0.0
|
||||
|
||||
# Fit and resolve
|
||||
solver.fit([instance])
|
||||
stats = solver.solve(instance)
|
||||
|
||||
# Objective value should be the same
|
||||
assert instance.upper_bound == original_upper_bound
|
||||
assert stats["ConvertTight: Inf iterations"] == 0
|
||||
assert stats["ConvertTight: Subopt iterations"] == 0
|
||||
|
||||
|
||||
class TestInstance(Instance):
|
||||
def to_model(self):
|
||||
import gurobipy as grb
|
||||
from gurobipy import GRB
|
||||
|
||||
m = grb.Model("model")
|
||||
x1 = m.addVar(name="x1")
|
||||
x2 = m.addVar(name="x2")
|
||||
m.setObjective(x1 + 2 * x2, grb.GRB.MAXIMIZE)
|
||||
m.addConstr(x1 <= 2, name="c1")
|
||||
m.addConstr(x2 <= 2, name="c2")
|
||||
m.addConstr(x1 + x2 <= 3, name="c2")
|
||||
return m
|
||||
|
||||
|
||||
def test_convert_tight_infeasibility():
|
||||
comp = ConvertTightIneqsIntoEqsStep()
|
||||
comp.classifiers = {
|
||||
"c1": Mock(spec=Classifier),
|
||||
"c2": Mock(spec=Classifier),
|
||||
"c3": Mock(spec=Classifier),
|
||||
}
|
||||
comp.classifiers["c1"].predict_proba = Mock(return_value=[[0, 1]])
|
||||
comp.classifiers["c2"].predict_proba = Mock(return_value=[[0, 1]])
|
||||
comp.classifiers["c3"].predict_proba = Mock(return_value=[[1, 0]])
|
||||
|
||||
solver = LearningSolver(
|
||||
solver=GurobiSolver(params={}),
|
||||
components=[comp],
|
||||
solve_lp_first=False,
|
||||
)
|
||||
instance = TestInstance()
|
||||
stats = solver.solve(instance)
|
||||
assert instance.lower_bound == 5.0
|
||||
assert stats["ConvertTight: Inf iterations"] == 1
|
||||
assert stats["ConvertTight: Subopt iterations"] == 0
|
||||
|
||||
|
||||
def test_convert_tight_suboptimality():
|
||||
comp = ConvertTightIneqsIntoEqsStep(check_optimality=True)
|
||||
comp.classifiers = {
|
||||
"c1": Mock(spec=Classifier),
|
||||
"c2": Mock(spec=Classifier),
|
||||
"c3": Mock(spec=Classifier),
|
||||
}
|
||||
comp.classifiers["c1"].predict_proba = Mock(return_value=[[0, 1]])
|
||||
comp.classifiers["c2"].predict_proba = Mock(return_value=[[1, 0]])
|
||||
comp.classifiers["c3"].predict_proba = Mock(return_value=[[0, 1]])
|
||||
|
||||
solver = LearningSolver(
|
||||
solver=GurobiSolver(params={}),
|
||||
components=[comp],
|
||||
solve_lp_first=False,
|
||||
)
|
||||
instance = TestInstance()
|
||||
stats = solver.solve(instance)
|
||||
assert instance.lower_bound == 5.0
|
||||
assert stats["ConvertTight: Inf iterations"] == 0
|
||||
assert stats["ConvertTight: Subopt iterations"] == 1
|
||||
|
||||
|
||||
def test_convert_tight_optimal():
|
||||
comp = ConvertTightIneqsIntoEqsStep()
|
||||
comp.classifiers = {
|
||||
"c1": Mock(spec=Classifier),
|
||||
"c2": Mock(spec=Classifier),
|
||||
"c3": Mock(spec=Classifier),
|
||||
}
|
||||
comp.classifiers["c1"].predict_proba = Mock(return_value=[[1, 0]])
|
||||
comp.classifiers["c2"].predict_proba = Mock(return_value=[[0, 1]])
|
||||
comp.classifiers["c3"].predict_proba = Mock(return_value=[[0, 1]])
|
||||
|
||||
solver = LearningSolver(
|
||||
solver=GurobiSolver(params={}),
|
||||
components=[comp],
|
||||
solve_lp_first=False,
|
||||
)
|
||||
instance = TestInstance()
|
||||
stats = solver.solve(instance)
|
||||
assert instance.lower_bound == 5.0
|
||||
assert stats["ConvertTight: Inf iterations"] == 0
|
||||
assert stats["ConvertTight: Subopt iterations"] == 0
|
||||
@@ -2,11 +2,21 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import numpy as np
|
||||
from unittest.mock import Mock, call
|
||||
|
||||
from miplearn import RelaxationComponent, LearningSolver, Instance, InternalSolver
|
||||
from miplearn import (
|
||||
LearningSolver,
|
||||
Instance,
|
||||
InternalSolver,
|
||||
GurobiSolver,
|
||||
)
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.components.relaxation import DropRedundantInequalitiesStep
|
||||
from miplearn.components.relaxation import (
|
||||
DropRedundantInequalitiesStep,
|
||||
RelaxIntegralityStep,
|
||||
)
|
||||
from miplearn.problems.knapsack import GurobiKnapsackInstance
|
||||
|
||||
|
||||
def _setup():
|
||||
@@ -14,7 +24,7 @@ def _setup():
|
||||
|
||||
internal = solver.internal_solver = Mock(spec=InternalSolver)
|
||||
internal.get_constraint_ids = Mock(return_value=["c1", "c2", "c3", "c4"])
|
||||
internal.get_constraint_slacks = Mock(
|
||||
internal.get_inequality_slacks = Mock(
|
||||
side_effect=lambda: {
|
||||
"c1": 0.5,
|
||||
"c2": 0.0,
|
||||
@@ -28,9 +38,9 @@ def _setup():
|
||||
instance = Mock(spec=Instance)
|
||||
instance.get_constraint_features = Mock(
|
||||
side_effect=lambda cid: {
|
||||
"c2": [1.0, 0.0],
|
||||
"c3": [0.5, 0.5],
|
||||
"c4": [1.0],
|
||||
"c2": np.array([1.0, 0.0]),
|
||||
"c3": np.array([0.5, 0.5]),
|
||||
"c4": np.array([1.0]),
|
||||
}[cid]
|
||||
)
|
||||
instance.get_constraint_category = Mock(
|
||||
@@ -47,33 +57,33 @@ def _setup():
|
||||
"type-b": Mock(spec=Classifier),
|
||||
}
|
||||
classifiers["type-a"].predict_proba = Mock(
|
||||
return_value=[
|
||||
[0.20, 0.80],
|
||||
[0.05, 0.95],
|
||||
]
|
||||
return_value=np.array(
|
||||
[
|
||||
[0.20, 0.80],
|
||||
[0.05, 0.95],
|
||||
]
|
||||
)
|
||||
)
|
||||
classifiers["type-b"].predict_proba = Mock(
|
||||
return_value=[
|
||||
[0.02, 0.98],
|
||||
]
|
||||
return_value=np.array(
|
||||
[
|
||||
[0.02, 0.98],
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
return solver, internal, instance, classifiers
|
||||
|
||||
|
||||
def test_usage():
|
||||
def test_drop_redundant():
|
||||
solver, internal, instance, classifiers = _setup()
|
||||
|
||||
component = RelaxationComponent()
|
||||
drop_ineqs_step = component.steps[1]
|
||||
drop_ineqs_step.classifiers = classifiers
|
||||
component = DropRedundantInequalitiesStep()
|
||||
component.classifiers = classifiers
|
||||
|
||||
# LearningSolver calls before_solve
|
||||
component.before_solve(solver, instance, None)
|
||||
|
||||
# Should relax integrality of the problem
|
||||
internal.relax.assert_called_once()
|
||||
|
||||
# Should query list of constraints
|
||||
internal.get_constraint_ids.assert_called_once()
|
||||
|
||||
@@ -99,10 +109,10 @@ def test_usage():
|
||||
)
|
||||
|
||||
# Should ask ML to predict whether constraint should be removed
|
||||
drop_ineqs_step.classifiers["type-a"].predict_proba.assert_called_once_with(
|
||||
[[1.0, 0.0], [0.5, 0.5]]
|
||||
)
|
||||
drop_ineqs_step.classifiers["type-b"].predict_proba.assert_called_once_with([[1.0]])
|
||||
type_a_actual = component.classifiers["type-a"].predict_proba.call_args[0][0]
|
||||
type_b_actual = component.classifiers["type-b"].predict_proba.call_args[0][0]
|
||||
np.testing.assert_array_equal(type_a_actual, np.array([[1.0, 0.0], [0.5, 0.5]]))
|
||||
np.testing.assert_array_equal(type_b_actual, np.array([[1.0]]))
|
||||
|
||||
# Should ask internal solver to remove constraints predicted as redundant
|
||||
assert internal.extract_constraint.call_count == 2
|
||||
@@ -114,14 +124,14 @@ def test_usage():
|
||||
)
|
||||
|
||||
# LearningSolver calls after_solve
|
||||
component.after_solve(solver, instance, None, None)
|
||||
training_data = {}
|
||||
component.after_solve(solver, instance, None, {}, training_data)
|
||||
|
||||
# Should query slack for all constraints
|
||||
internal.get_constraint_slacks.assert_called_once()
|
||||
# Should query slack for all inequalities
|
||||
internal.get_inequality_slacks.assert_called_once()
|
||||
|
||||
# Should store constraint slacks in instance object
|
||||
assert hasattr(instance, "slacks")
|
||||
assert instance.slacks == {
|
||||
assert training_data["slacks"] == {
|
||||
"c1": 0.5,
|
||||
"c2": 0.0,
|
||||
"c3": 0.0,
|
||||
@@ -129,12 +139,14 @@ def test_usage():
|
||||
}
|
||||
|
||||
|
||||
def test_usage_with_check_dropped():
|
||||
def test_drop_redundant_with_check_feasibility():
|
||||
solver, internal, instance, classifiers = _setup()
|
||||
|
||||
component = RelaxationComponent(check_dropped=True, violation_tolerance=1e-3)
|
||||
drop_ineqs_step = component.steps[1]
|
||||
drop_ineqs_step.classifiers = classifiers
|
||||
component = DropRedundantInequalitiesStep(
|
||||
check_feasibility=True,
|
||||
violation_tolerance=1e-3,
|
||||
)
|
||||
component.classifiers = classifiers
|
||||
|
||||
# LearningSolver call before_solve
|
||||
component.before_solve(solver, instance, None)
|
||||
@@ -179,23 +191,29 @@ def test_x_y_fit_predict_evaluate():
|
||||
}
|
||||
component.classifiers["type-a"].predict_proba = Mock(
|
||||
return_value=[
|
||||
[0.20, 0.80],
|
||||
np.array([0.20, 0.80]),
|
||||
]
|
||||
)
|
||||
component.classifiers["type-b"].predict_proba = Mock(
|
||||
return_value=[
|
||||
[0.50, 0.50],
|
||||
[0.05, 0.95],
|
||||
]
|
||||
return_value=np.array(
|
||||
[
|
||||
[0.50, 0.50],
|
||||
[0.05, 0.95],
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
# First mock instance
|
||||
instances[0].slacks = {
|
||||
"c1": 0.00,
|
||||
"c2": 0.05,
|
||||
"c3": 0.00,
|
||||
"c4": 30.0,
|
||||
}
|
||||
instances[0].training_data = [
|
||||
{
|
||||
"slacks": {
|
||||
"c1": 0.00,
|
||||
"c2": 0.05,
|
||||
"c3": 0.00,
|
||||
"c4": 30.0,
|
||||
}
|
||||
}
|
||||
]
|
||||
instances[0].get_constraint_category = Mock(
|
||||
side_effect=lambda cid: {
|
||||
"c1": None,
|
||||
@@ -206,19 +224,23 @@ def test_x_y_fit_predict_evaluate():
|
||||
)
|
||||
instances[0].get_constraint_features = Mock(
|
||||
side_effect=lambda cid: {
|
||||
"c2": [1.0, 0.0],
|
||||
"c3": [0.5, 0.5],
|
||||
"c4": [1.0],
|
||||
"c2": np.array([1.0, 0.0]),
|
||||
"c3": np.array([0.5, 0.5]),
|
||||
"c4": np.array([1.0]),
|
||||
}[cid]
|
||||
)
|
||||
|
||||
# Second mock instance
|
||||
instances[1].slacks = {
|
||||
"c1": 0.00,
|
||||
"c3": 0.30,
|
||||
"c4": 0.00,
|
||||
"c5": 0.00,
|
||||
}
|
||||
instances[1].training_data = [
|
||||
{
|
||||
"slacks": {
|
||||
"c1": 0.00,
|
||||
"c3": 0.30,
|
||||
"c4": 0.00,
|
||||
"c5": 0.00,
|
||||
}
|
||||
}
|
||||
]
|
||||
instances[1].get_constraint_category = Mock(
|
||||
side_effect=lambda cid: {
|
||||
"c1": None,
|
||||
@@ -229,32 +251,47 @@ def test_x_y_fit_predict_evaluate():
|
||||
)
|
||||
instances[1].get_constraint_features = Mock(
|
||||
side_effect=lambda cid: {
|
||||
"c3": [0.3, 0.4],
|
||||
"c4": [0.7],
|
||||
"c5": [0.8],
|
||||
"c3": np.array([0.3, 0.4]),
|
||||
"c4": np.array([0.7]),
|
||||
"c5": np.array([0.8]),
|
||||
}[cid]
|
||||
)
|
||||
|
||||
expected_x = {
|
||||
"type-a": [[1.0, 0.0], [0.5, 0.5], [0.3, 0.4]],
|
||||
"type-b": [[1.0], [0.7], [0.8]],
|
||||
"type-a": np.array(
|
||||
[
|
||||
[1.0, 0.0],
|
||||
[0.5, 0.5],
|
||||
[0.3, 0.4],
|
||||
]
|
||||
),
|
||||
"type-b": np.array(
|
||||
[
|
||||
[1.0],
|
||||
[0.7],
|
||||
[0.8],
|
||||
]
|
||||
),
|
||||
}
|
||||
expected_y = {
|
||||
"type-a": np.array([[0], [0], [1]]),
|
||||
"type-b": np.array([[1], [0], [0]]),
|
||||
}
|
||||
expected_y = {"type-a": [[0], [0], [1]], "type-b": [[1], [0], [0]]}
|
||||
|
||||
# Should build X and Y matrices correctly
|
||||
assert component.x(instances) == expected_x
|
||||
assert component.y(instances) == expected_y
|
||||
actual_x = component.x(instances)
|
||||
actual_y = component.y(instances)
|
||||
for category in ["type-a", "type-b"]:
|
||||
np.testing.assert_array_equal(actual_x[category], expected_x[category])
|
||||
np.testing.assert_array_equal(actual_y[category], expected_y[category])
|
||||
|
||||
# Should pass along X and Y matrices to classifiers
|
||||
component.fit(instances)
|
||||
component.classifiers["type-a"].fit.assert_called_with(
|
||||
expected_x["type-a"],
|
||||
expected_y["type-a"],
|
||||
)
|
||||
component.classifiers["type-b"].fit.assert_called_with(
|
||||
expected_x["type-b"],
|
||||
expected_y["type-b"],
|
||||
)
|
||||
for category in ["type-a", "type-b"]:
|
||||
actual_x = component.classifiers[category].fit.call_args[0][0]
|
||||
actual_y = component.classifiers[category].fit.call_args[0][1]
|
||||
np.testing.assert_array_equal(actual_x, expected_x[category])
|
||||
np.testing.assert_array_equal(actual_y, expected_y[category])
|
||||
|
||||
assert component.predict(expected_x) == {"type-a": [[1]], "type-b": [[0], [1]]}
|
||||
|
||||
@@ -263,3 +300,71 @@ def test_x_y_fit_predict_evaluate():
|
||||
assert ev["True negative"] == 1
|
||||
assert ev["False positive"] == 1
|
||||
assert ev["False negative"] == 0
|
||||
|
||||
|
||||
def test_x_multiple_solves():
|
||||
instance = Mock(spec=Instance)
|
||||
instance.training_data = [
|
||||
{
|
||||
"slacks": {
|
||||
"c1": 0.00,
|
||||
"c2": 0.05,
|
||||
"c3": 0.00,
|
||||
"c4": 30.0,
|
||||
}
|
||||
},
|
||||
{
|
||||
"slacks": {
|
||||
"c1": 0.00,
|
||||
"c2": 0.00,
|
||||
"c3": 1.00,
|
||||
"c4": 0.0,
|
||||
}
|
||||
},
|
||||
]
|
||||
instance.get_constraint_category = Mock(
|
||||
side_effect=lambda cid: {
|
||||
"c1": None,
|
||||
"c2": "type-a",
|
||||
"c3": "type-a",
|
||||
"c4": "type-b",
|
||||
}[cid]
|
||||
)
|
||||
instance.get_constraint_features = Mock(
|
||||
side_effect=lambda cid: {
|
||||
"c2": np.array([1.0, 0.0]),
|
||||
"c3": np.array([0.5, 0.5]),
|
||||
"c4": np.array([1.0]),
|
||||
}[cid]
|
||||
)
|
||||
|
||||
expected_x = {
|
||||
"type-a": np.array(
|
||||
[
|
||||
[1.0, 0.0],
|
||||
[0.5, 0.5],
|
||||
[1.0, 0.0],
|
||||
[0.5, 0.5],
|
||||
]
|
||||
),
|
||||
"type-b": np.array(
|
||||
[
|
||||
[1.0],
|
||||
[1.0],
|
||||
]
|
||||
),
|
||||
}
|
||||
|
||||
expected_y = {
|
||||
"type-a": np.array([[1], [0], [0], [1]]),
|
||||
"type-b": np.array([[1], [0]]),
|
||||
}
|
||||
|
||||
# Should build X and Y matrices correctly
|
||||
component = DropRedundantInequalitiesStep()
|
||||
actual_x = component.x([instance])
|
||||
actual_y = component.y([instance])
|
||||
print(actual_x)
|
||||
for category in ["type-a", "type-b"]:
|
||||
np.testing.assert_array_equal(actual_x[category], expected_x[category])
|
||||
np.testing.assert_array_equal(actual_y[category], expected_y[category])
|
||||
@@ -27,9 +27,9 @@ def test_composite():
|
||||
c2.before_solve.assert_has_calls([call(solver, instance, model)])
|
||||
|
||||
# Should broadcast after_solve
|
||||
cc.after_solve(solver, instance, model, {})
|
||||
c1.after_solve.assert_has_calls([call(solver, instance, model, {})])
|
||||
c2.after_solve.assert_has_calls([call(solver, instance, model, {})])
|
||||
cc.after_solve(solver, instance, model, {}, {})
|
||||
c1.after_solve.assert_has_calls([call(solver, instance, model, {}, {})])
|
||||
c2.after_solve.assert_has_calls([call(solver, instance, model, {}, {})])
|
||||
|
||||
# Should broadcast fit
|
||||
cc.fit([1, 2, 3])
|
||||
|
||||
@@ -28,13 +28,16 @@ class InstanceIterator:
|
||||
result = self.instances[self.current]
|
||||
self.current += 1
|
||||
if isinstance(result, str):
|
||||
logger.info("Read: %s" % result)
|
||||
if result.endswith(".gz"):
|
||||
with gzip.GzipFile(result, "rb") as file:
|
||||
result = pickle.load(file)
|
||||
else:
|
||||
with open(result, "rb") as file:
|
||||
result = pickle.load(file)
|
||||
logger.debug("Read: %s" % result)
|
||||
try:
|
||||
if result.endswith(".gz"):
|
||||
with gzip.GzipFile(result, "rb") as file:
|
||||
result = pickle.load(file)
|
||||
else:
|
||||
with open(result, "rb") as file:
|
||||
result = pickle.load(file)
|
||||
except pickle.UnpicklingError:
|
||||
raise Exception(f"Invalid instance file: {result}")
|
||||
return result
|
||||
|
||||
|
||||
|
||||
@@ -2,14 +2,14 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
import networkx as nx
|
||||
from miplearn import Instance
|
||||
import random
|
||||
from scipy.stats import uniform, randint, bernoulli
|
||||
from scipy.stats import uniform, randint
|
||||
from scipy.stats.distributions import rv_frozen
|
||||
|
||||
from miplearn import Instance
|
||||
|
||||
|
||||
class ChallengeA:
|
||||
def __init__(
|
||||
|
||||
@@ -5,6 +5,7 @@ import re
|
||||
import sys
|
||||
import logging
|
||||
from io import StringIO
|
||||
from random import randint
|
||||
|
||||
from . import RedirectOutput
|
||||
from .internal import InternalSolver
|
||||
@@ -33,6 +34,7 @@ class GurobiSolver(InternalSolver):
|
||||
"""
|
||||
if params is None:
|
||||
params = {}
|
||||
params["InfUnbdInfo"] = True
|
||||
from gurobipy import GRB
|
||||
|
||||
self.GRB = GRB
|
||||
@@ -84,16 +86,19 @@ class GurobiSolver(InternalSolver):
|
||||
self._bin_vars[name] = {}
|
||||
self._bin_vars[name][idx] = var
|
||||
|
||||
def _apply_params(self):
|
||||
for (name, value) in self.params.items():
|
||||
self.model.setParam(name, value)
|
||||
def _apply_params(self, streams):
|
||||
with RedirectOutput(streams):
|
||||
for (name, value) in self.params.items():
|
||||
self.model.setParam(name, value)
|
||||
if "seed" not in [k.lower() for k in self.params.keys()]:
|
||||
self.model.setParam("Seed", randint(0, 1_000_000))
|
||||
|
||||
def solve_lp(self, tee=False):
|
||||
self._raise_if_callback()
|
||||
self._apply_params()
|
||||
streams = [StringIO()]
|
||||
if tee:
|
||||
streams += [sys.stdout]
|
||||
self._apply_params(streams)
|
||||
for (varname, vardict) in self._bin_vars.items():
|
||||
for (idx, var) in vardict.items():
|
||||
var.vtype = self.GRB.CONTINUOUS
|
||||
@@ -122,16 +127,15 @@ class GurobiSolver(InternalSolver):
|
||||
|
||||
if lazy_cb:
|
||||
self.params["LazyConstraints"] = 1
|
||||
self._apply_params()
|
||||
total_wallclock_time = 0
|
||||
total_nodes = 0
|
||||
streams = [StringIO()]
|
||||
if tee:
|
||||
streams += [sys.stdout]
|
||||
self._apply_params(streams)
|
||||
if iteration_cb is None:
|
||||
iteration_cb = lambda: False
|
||||
while True:
|
||||
logger.debug("Solving MIP...")
|
||||
with RedirectOutput(streams):
|
||||
if lazy_cb is None:
|
||||
self.model.optimize()
|
||||
@@ -161,6 +165,12 @@ class GurobiSolver(InternalSolver):
|
||||
"Warm start value": self._extract_warm_start_value(log),
|
||||
}
|
||||
|
||||
def get_sense(self):
|
||||
if self.model.modelSense == 1:
|
||||
return "min"
|
||||
else:
|
||||
return "max"
|
||||
|
||||
def get_solution(self):
|
||||
self._raise_if_callback()
|
||||
|
||||
@@ -175,6 +185,16 @@ class GurobiSolver(InternalSolver):
|
||||
var = self._all_vars[var_name][index]
|
||||
return self._get_value(var)
|
||||
|
||||
def is_infeasible(self):
|
||||
return self.model.status in [self.GRB.INFEASIBLE, self.GRB.INF_OR_UNBD]
|
||||
|
||||
def get_dual(self, cid):
|
||||
c = self.model.getConstrByName(cid)
|
||||
if self.is_infeasible():
|
||||
return c.farkasDual
|
||||
else:
|
||||
return c.pi
|
||||
|
||||
def _get_value(self, var):
|
||||
if self.cb_where == self.GRB.Callback.MIPSOL:
|
||||
return self.model.cbGetSolution(var)
|
||||
@@ -271,13 +291,18 @@ class GurobiSolver(InternalSolver):
|
||||
else:
|
||||
raise Exception("Unknown sense: %s" % sense)
|
||||
|
||||
def get_constraint_slacks(self):
|
||||
return {c.ConstrName: c.Slack for c in self.model.getConstrs()}
|
||||
def get_inequality_slacks(self):
|
||||
ineqs = [c for c in self.model.getConstrs() if c.sense != "="]
|
||||
return {c.ConstrName: c.Slack for c in ineqs}
|
||||
|
||||
def set_constraint_sense(self, cid, sense):
|
||||
c = self.model.getConstrByName(cid)
|
||||
c.Sense = sense
|
||||
|
||||
def get_constraint_sense(self, cid):
|
||||
c = self.model.getConstrByName(cid)
|
||||
return c.Sense
|
||||
|
||||
def set_constraint_rhs(self, cid, rhs):
|
||||
c = self.model.getConstrByName(cid)
|
||||
c.RHS = rhs
|
||||
|
||||
@@ -184,13 +184,39 @@ class InternalSolver(ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_constraint_slacks(self):
|
||||
def get_inequality_slacks(self):
|
||||
"""
|
||||
Returns a dictionary mapping constraint name to the constraint slack
|
||||
in the current solution.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def is_infeasible(self):
|
||||
"""
|
||||
Returns True if the model has been proved to be infeasible.
|
||||
Must be called after solve.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_dual(self, cid):
|
||||
"""
|
||||
If the model is feasible and has been solved to optimality, returns the optimal
|
||||
value of the dual variable associated with this constraint. If the model is infeasible,
|
||||
returns a portion of the infeasibility certificate corresponding to the given constraint.
|
||||
|
||||
Solve must be called prior to this method.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_sense(self):
|
||||
"""
|
||||
Returns the sense of the problem (either "min" or "max").
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def is_constraint_satisfied(self, cobj):
|
||||
pass
|
||||
@@ -199,6 +225,10 @@ class InternalSolver(ABC):
|
||||
def set_constraint_sense(self, cid, sense):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_constraint_sense(self, cid):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def set_constraint_rhs(self, cid, rhs):
|
||||
pass
|
||||
|
||||
@@ -11,7 +11,9 @@ import gzip
|
||||
from copy import deepcopy
|
||||
from typing import Optional, List
|
||||
from p_tqdm import p_map
|
||||
from tempfile import NamedTemporaryFile
|
||||
|
||||
from . import RedirectOutput
|
||||
from .. import (
|
||||
ObjectiveValueComponent,
|
||||
PrimalSolutionComponent,
|
||||
@@ -23,7 +25,6 @@ from .pyomo.gurobi import GurobiPyomoSolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# Global memory for multiprocessing
|
||||
SOLVER = [None] # type: List[Optional[LearningSolver]]
|
||||
INSTANCES = [None] # type: List[Optional[dict]]
|
||||
@@ -44,6 +45,52 @@ def _parallel_solve(idx):
|
||||
|
||||
|
||||
class LearningSolver:
|
||||
"""
|
||||
Mixed-Integer Linear Programming (MIP) solver that extracts information
|
||||
from previous runs and uses Machine Learning methods to accelerate the
|
||||
solution of new (yet unseen) instances.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
components
|
||||
Set of components in the solver. By default, includes:
|
||||
- ObjectiveValueComponent
|
||||
- PrimalSolutionComponent
|
||||
- DynamicLazyConstraintsComponent
|
||||
- UserCutsComponent
|
||||
gap_tolerance
|
||||
Relative MIP gap tolerance. By default, 1e-4.
|
||||
mode
|
||||
If "exact", solves problem to optimality, keeping all optimality
|
||||
guarantees provided by the MIP solver. If "heuristic", uses machine
|
||||
learning more aggressively, and may return suboptimal solutions.
|
||||
solver
|
||||
The internal MIP solver to use. Can be either "cplex", "gurobi", a
|
||||
solver class such as GurobiSolver, or a solver instance such as
|
||||
GurobiSolver().
|
||||
threads
|
||||
Maximum number of threads to use. If None, uses solver default.
|
||||
time_limit
|
||||
Maximum running time in seconds. If None, uses solver default.
|
||||
node_limit
|
||||
Maximum number of branch-and-bound nodes to explore. If None, uses
|
||||
solver default.
|
||||
use_lazy_cb
|
||||
If True, uses lazy callbacks to enforce lazy constraints, instead of
|
||||
a simple solver loop. This functionality may not supported by
|
||||
all internal MIP solvers.
|
||||
solve_lp_first: bool
|
||||
If true, solve LP relaxation first, then solve original MILP. This
|
||||
option should be activated if the LP relaxation is not very
|
||||
expensive to solve and if it provides good hints for the integer
|
||||
solution.
|
||||
simulate_perfect: bool
|
||||
If true, each call to solve actually performs three actions: solve
|
||||
the original problem, train the ML models on the data that was just
|
||||
collected, and solve the problem again. This is useful for evaluating
|
||||
the theoretical performance of perfect ML models.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
components=None,
|
||||
@@ -55,47 +102,8 @@ class LearningSolver:
|
||||
node_limit=None,
|
||||
solve_lp_first=True,
|
||||
use_lazy_cb=False,
|
||||
simulate_perfect=False,
|
||||
):
|
||||
"""
|
||||
Mixed-Integer Linear Programming (MIP) solver that extracts information
|
||||
from previous runs and uses Machine Learning methods to accelerate the
|
||||
solution of new (yet unseen) instances.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
components
|
||||
Set of components in the solver. By default, includes:
|
||||
- ObjectiveValueComponent
|
||||
- PrimalSolutionComponent
|
||||
- DynamicLazyConstraintsComponent
|
||||
- UserCutsComponent
|
||||
gap_tolerance
|
||||
Relative MIP gap tolerance. By default, 1e-4.
|
||||
mode
|
||||
If "exact", solves problem to optimality, keeping all optimality
|
||||
guarantees provided by the MIP solver. If "heuristic", uses machine
|
||||
learning more agressively, and may return suboptimal solutions.
|
||||
solver
|
||||
The internal MIP solver to use. Can be either "cplex", "gurobi", a
|
||||
solver class such as GurobiSolver, or a solver instance such as
|
||||
GurobiSolver().
|
||||
threads
|
||||
Maximum number of threads to use. If None, uses solver default.
|
||||
time_limit
|
||||
Maximum running time in seconds. If None, uses solver default.
|
||||
node_limit
|
||||
Maximum number of branch-and-bound nodes to explore. If None, uses
|
||||
solver default.
|
||||
use_lazy_cb
|
||||
If True, uses lazy callbacks to enforce lazy constraints, instead of
|
||||
a simple solver loop. This functionality may not supported by
|
||||
all internal MIP solvers.
|
||||
solve_lp_first: bool
|
||||
If true, solve LP relaxation first, then solve original MILP. This
|
||||
option should be activated if the LP relaxation is not very
|
||||
expensive to solve and if it provides good hints for the integer
|
||||
solution.
|
||||
"""
|
||||
self.components = {}
|
||||
self.mode = mode
|
||||
self.internal_solver = None
|
||||
@@ -107,6 +115,7 @@ class LearningSolver:
|
||||
self.node_limit = node_limit
|
||||
self.solve_lp_first = solve_lp_first
|
||||
self.use_lazy_cb = use_lazy_cb
|
||||
self.simulate_perfect = simulate_perfect
|
||||
|
||||
if components is not None:
|
||||
for comp in components:
|
||||
@@ -202,7 +211,31 @@ class LearningSolver:
|
||||
"Predicted UB". See the documentation of each component for more
|
||||
details.
|
||||
"""
|
||||
if self.simulate_perfect:
|
||||
if not isinstance(instance, str):
|
||||
raise Exception("Not implemented")
|
||||
with tempfile.NamedTemporaryFile(suffix=os.path.basename(instance)) as tmp:
|
||||
self._solve(
|
||||
instance=instance,
|
||||
model=model,
|
||||
output=tmp.name,
|
||||
tee=tee,
|
||||
)
|
||||
self.fit([tmp.name])
|
||||
return self._solve(
|
||||
instance=instance,
|
||||
model=model,
|
||||
output=output,
|
||||
tee=tee,
|
||||
)
|
||||
|
||||
def _solve(
|
||||
self,
|
||||
instance,
|
||||
model=None,
|
||||
output="",
|
||||
tee=False,
|
||||
):
|
||||
filename = None
|
||||
fileformat = None
|
||||
if isinstance(instance, str):
|
||||
@@ -218,7 +251,8 @@ class LearningSolver:
|
||||
instance = pickle.load(file)
|
||||
|
||||
if model is None:
|
||||
model = instance.to_model()
|
||||
with RedirectOutput([]):
|
||||
model = instance.to_model()
|
||||
|
||||
self.tee = tee
|
||||
self.internal_solver = self._create_internal_solver()
|
||||
@@ -253,22 +287,27 @@ class LearningSolver:
|
||||
lazy_cb = lazy_cb_wrapper
|
||||
|
||||
logger.info("Solving MILP...")
|
||||
results = self.internal_solver.solve(
|
||||
stats = self.internal_solver.solve(
|
||||
tee=tee,
|
||||
iteration_cb=iteration_cb,
|
||||
lazy_cb=lazy_cb,
|
||||
)
|
||||
results["LP value"] = instance.lp_value
|
||||
stats["LP value"] = instance.lp_value
|
||||
|
||||
# Read MIP solution and bounds
|
||||
instance.lower_bound = results["Lower bound"]
|
||||
instance.upper_bound = results["Upper bound"]
|
||||
instance.solver_log = results["Log"]
|
||||
instance.lower_bound = stats["Lower bound"]
|
||||
instance.upper_bound = stats["Upper bound"]
|
||||
instance.solver_log = stats["Log"]
|
||||
instance.solution = self.internal_solver.get_solution()
|
||||
|
||||
logger.debug("Calling after_solve callbacks...")
|
||||
training_data = {}
|
||||
for component in self.components.values():
|
||||
component.after_solve(self, instance, model, results)
|
||||
component.after_solve(self, instance, model, stats, training_data)
|
||||
|
||||
if not hasattr(instance, "training_data"):
|
||||
instance.training_data = []
|
||||
instance.training_data += [training_data]
|
||||
|
||||
if filename is not None and output is not None:
|
||||
output_filename = output
|
||||
@@ -282,7 +321,7 @@ class LearningSolver:
|
||||
with gzip.GzipFile(output_filename, "wb") as file:
|
||||
pickle.dump(instance, file)
|
||||
|
||||
return results
|
||||
return stats
|
||||
|
||||
def parallel_solve(self, instances, n_jobs=4, label="Solve", output=[]):
|
||||
"""
|
||||
|
||||
@@ -256,11 +256,23 @@ class BasePyomoSolver(InternalSolver):
|
||||
def relax(self):
|
||||
raise Exception("not implemented")
|
||||
|
||||
def get_constraint_slacks(self):
|
||||
def get_inequality_slacks(self):
|
||||
raise Exception("not implemented")
|
||||
|
||||
def set_constraint_sense(self, cid, sense):
|
||||
raise Exception("Not implemented")
|
||||
|
||||
def get_constraint_sense(self, cid):
|
||||
raise Exception("Not implemented")
|
||||
|
||||
def set_constraint_rhs(self, cid, rhs):
|
||||
raise Exception("Not implemented")
|
||||
|
||||
def is_infeasible(self):
|
||||
raise Exception("Not implemented")
|
||||
|
||||
def get_dual(self, cid):
|
||||
raise Exception("Not implemented")
|
||||
|
||||
def get_sense(self):
|
||||
raise Exception("Not implemented")
|
||||
|
||||
@@ -7,8 +7,11 @@ import pickle
|
||||
import tempfile
|
||||
import os
|
||||
|
||||
from miplearn import DynamicLazyConstraintsComponent
|
||||
from miplearn import LearningSolver
|
||||
from miplearn import (
|
||||
LearningSolver,
|
||||
GurobiSolver,
|
||||
DynamicLazyConstraintsComponent,
|
||||
)
|
||||
|
||||
from . import _get_instance, _get_internal_solvers
|
||||
|
||||
@@ -109,3 +112,18 @@ def test_solve_fit_from_disk():
|
||||
os.remove(filename)
|
||||
for filename in output:
|
||||
os.remove(filename)
|
||||
|
||||
|
||||
def test_simulate_perfect():
|
||||
internal_solver = GurobiSolver()
|
||||
instance = _get_instance(internal_solver)
|
||||
with tempfile.NamedTemporaryFile(suffix=".pkl", delete=False) as tmp:
|
||||
pickle.dump(instance, tmp)
|
||||
tmp.flush()
|
||||
solver = LearningSolver(
|
||||
solver=internal_solver,
|
||||
simulate_perfect=True,
|
||||
)
|
||||
|
||||
stats = solver.solve(tmp.name)
|
||||
assert stats["Lower bound"] == stats["Predicted LB"]
|
||||
|
||||
@@ -27,11 +27,11 @@ def test_benchmark():
|
||||
benchmark = BenchmarkRunner(test_solvers)
|
||||
benchmark.fit(train_instances)
|
||||
benchmark.parallel_solve(test_instances, n_jobs=2, n_trials=2)
|
||||
assert benchmark.raw_results().values.shape == (12, 16)
|
||||
assert benchmark.raw_results().values.shape == (12, 19)
|
||||
|
||||
benchmark.save_results("/tmp/benchmark.csv")
|
||||
assert os.path.isfile("/tmp/benchmark.csv")
|
||||
|
||||
benchmark = BenchmarkRunner(test_solvers)
|
||||
benchmark.load_results("/tmp/benchmark.csv")
|
||||
assert benchmark.raw_results().values.shape == (12, 16)
|
||||
assert benchmark.raw_results().values.shape == (12, 19)
|
||||
|
||||
Reference in New Issue
Block a user