mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
get_constraints: Fetch slack and dual values
This commit is contained in:
@@ -5,6 +5,7 @@ import logging
|
||||
import re
|
||||
import sys
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from io import StringIO
|
||||
from random import randint
|
||||
from typing import List, Any, Dict, Optional, Hashable
|
||||
@@ -68,6 +69,9 @@ class GurobiSolver(InternalSolver):
|
||||
self.lazy_cb_frequency = lazy_cb_frequency
|
||||
self._bin_vars: List["gurobipy.Var"] = []
|
||||
self._varname_to_var: Dict[str, "gurobipy.Var"] = {}
|
||||
self._dirty = True
|
||||
self._has_lp_solution = False
|
||||
self._has_mip_solution = False
|
||||
|
||||
if self.lazy_cb_frequency == 1:
|
||||
self.lazy_cb_where = [self.gp.GRB.Callback.MIPSOL]
|
||||
@@ -136,9 +140,12 @@ class GurobiSolver(InternalSolver):
|
||||
var.ub = 1.0
|
||||
with _RedirectOutput(streams):
|
||||
self.model.optimize()
|
||||
self._dirty = False
|
||||
for var in self._bin_vars:
|
||||
var.vtype = self.gp.GRB.BINARY
|
||||
log = streams[0].getvalue()
|
||||
self._has_lp_solution = self.model.solCount > 0
|
||||
self._has_mip_solution = False
|
||||
opt_value = None
|
||||
if not self.is_infeasible():
|
||||
opt_value = self.model.objVal
|
||||
@@ -191,6 +198,7 @@ class GurobiSolver(InternalSolver):
|
||||
while True:
|
||||
with _RedirectOutput(streams):
|
||||
self.model.optimize(cb_wrapper)
|
||||
self._dirty = False
|
||||
if len(callback_exceptions) > 0:
|
||||
raise callback_exceptions[0]
|
||||
total_wallclock_time += self.model.runtime
|
||||
@@ -198,6 +206,8 @@ class GurobiSolver(InternalSolver):
|
||||
should_repeat = iteration_cb()
|
||||
if not should_repeat:
|
||||
break
|
||||
self._has_lp_solution = False
|
||||
self._has_mip_solution = self.model.solCount > 0
|
||||
|
||||
# Fetch results and stats
|
||||
log = streams[0].getvalue()
|
||||
@@ -306,6 +316,9 @@ class GurobiSolver(InternalSolver):
|
||||
self.model.addConstr(lhs <= constr.rhs, name=name)
|
||||
else:
|
||||
self.model.addConstr(lhs >= constr.rhs, name=name)
|
||||
self._dirty = True
|
||||
self._has_lp_solution = False
|
||||
self._has_mip_solution = False
|
||||
|
||||
@overrides
|
||||
def remove_constraint(self, name: str) -> None:
|
||||
@@ -341,12 +354,6 @@ class GurobiSolver(InternalSolver):
|
||||
var.lb = value
|
||||
var.ub = value
|
||||
|
||||
@overrides
|
||||
def get_inequality_slacks(self) -> Dict[str, float]:
|
||||
assert self.model is not None
|
||||
ineqs = [c for c in self.model.getConstrs() if c.sense != "="]
|
||||
return {c.ConstrName: c.Slack for c in ineqs}
|
||||
|
||||
@overrides
|
||||
def relax(self) -> None:
|
||||
assert self.model is not None
|
||||
@@ -414,7 +421,9 @@ class GurobiSolver(InternalSolver):
|
||||
def get_constraints(self) -> Dict[str, Constraint]:
|
||||
assert self.model is not None
|
||||
self._raise_if_callback()
|
||||
self.model.update()
|
||||
if self._dirty:
|
||||
self.model.update()
|
||||
self._dirty = False
|
||||
constraints: Dict[str, Constraint] = {}
|
||||
for c in self.model.getConstrs():
|
||||
constr = self._parse_gurobi_constraint(c)
|
||||
@@ -422,13 +431,22 @@ class GurobiSolver(InternalSolver):
|
||||
constraints[c.constrName] = constr
|
||||
return constraints
|
||||
|
||||
def _parse_gurobi_constraint(self, c: Any) -> Constraint:
|
||||
def _parse_gurobi_constraint(self, gp_constr: Any) -> Constraint:
|
||||
assert self.model is not None
|
||||
expr = self.model.getRow(c)
|
||||
expr = self.model.getRow(gp_constr)
|
||||
lhs: Dict[str, float] = {}
|
||||
for i in range(expr.size()):
|
||||
lhs[expr.getVar(i).varName] = expr.getCoeff(i)
|
||||
return Constraint(rhs=c.rhs, lhs=lhs, sense=c.sense)
|
||||
constr = Constraint(
|
||||
rhs=gp_constr.rhs,
|
||||
lhs=lhs,
|
||||
sense=gp_constr.sense,
|
||||
)
|
||||
if self._has_lp_solution:
|
||||
constr.dual_value = gp_constr.pi
|
||||
if self._has_lp_solution or self._has_mip_solution:
|
||||
constr.slack = gp_constr.slack
|
||||
return constr
|
||||
|
||||
@overrides
|
||||
def are_callbacks_supported(self) -> bool:
|
||||
|
||||
@@ -184,14 +184,6 @@ class InternalSolver(ABC, EnforceOverrides):
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_inequality_slacks(self) -> Dict[str, float]:
|
||||
"""
|
||||
Returns a dictionary mapping constraint name to the constraint slack
|
||||
in the current solution.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def is_infeasible(self) -> bool:
|
||||
"""
|
||||
|
||||
@@ -12,7 +12,7 @@ import numpy as np
|
||||
import pyomo
|
||||
from overrides import overrides
|
||||
from pyomo import environ as pe
|
||||
from pyomo.core import Var
|
||||
from pyomo.core import Var, Suffix
|
||||
from pyomo.core.base import _GeneralVarData
|
||||
from pyomo.core.base.constraint import ConstraintList
|
||||
from pyomo.core.expr.numeric_expr import SumExpression, MonomialTermExpression
|
||||
@@ -61,6 +61,8 @@ class BasePyomoSolver(InternalSolver):
|
||||
self._varname_to_var: Dict[str, pe.Var] = {}
|
||||
self._cname_to_constr: Dict[str, pe.Constraint] = {}
|
||||
self._termination_condition: str = ""
|
||||
self._has_lp_solution = False
|
||||
self._has_mip_solution = False
|
||||
|
||||
for (key, value) in params.items():
|
||||
self._pyomo_solver.options[key] = value
|
||||
@@ -76,10 +78,14 @@ class BasePyomoSolver(InternalSolver):
|
||||
streams += [sys.stdout]
|
||||
with _RedirectOutput(streams):
|
||||
results = self._pyomo_solver.solve(tee=True)
|
||||
self._termination_condition = results["Solver"][0]["Termination condition"]
|
||||
self._restore_integrality()
|
||||
opt_value = None
|
||||
self._has_lp_solution = False
|
||||
self._has_mip_solution = False
|
||||
if not self.is_infeasible():
|
||||
opt_value = results["Problem"][0]["Lower bound"]
|
||||
self._has_lp_solution = True
|
||||
return {
|
||||
"LP value": opt_value,
|
||||
"LP log": streams[0].getvalue(),
|
||||
@@ -122,7 +128,10 @@ class BasePyomoSolver(InternalSolver):
|
||||
ws_value = self._extract_warm_start_value(log)
|
||||
self._termination_condition = results["Solver"][0]["Termination condition"]
|
||||
lb, ub = None, None
|
||||
self._has_mip_solution = False
|
||||
self._has_lp_solution = False
|
||||
if not self.is_infeasible():
|
||||
self._has_mip_solution = True
|
||||
lb = results["Problem"][0]["Lower bound"]
|
||||
ub = results["Problem"][0]["Upper bound"]
|
||||
stats: MIPSolveStats = {
|
||||
@@ -185,6 +194,7 @@ class BasePyomoSolver(InternalSolver):
|
||||
self.instance = instance
|
||||
self.model = model
|
||||
self.model.extra_constraints = ConstraintList()
|
||||
self.model.dual = Suffix(direction=Suffix.IMPORT)
|
||||
self._pyomo_solver.set_instance(model)
|
||||
self._update_obj()
|
||||
self._update_vars()
|
||||
@@ -256,6 +266,9 @@ class BasePyomoSolver(InternalSolver):
|
||||
self._cname_to_constr[name] = cl
|
||||
else:
|
||||
self._pyomo_solver.add_constraint(constr)
|
||||
self._termination_condition = ""
|
||||
self._has_lp_solution = False
|
||||
self._has_mip_solution = False
|
||||
|
||||
@overrides
|
||||
def remove_constraint(self, name: str) -> None:
|
||||
@@ -321,22 +334,14 @@ class BasePyomoSolver(InternalSolver):
|
||||
var.domain = pyomo.core.base.set_types.Reals
|
||||
self._pyomo_solver.update_var(var)
|
||||
|
||||
@overrides
|
||||
def get_inequality_slacks(self) -> Dict[str, float]:
|
||||
result: Dict[str, float] = {}
|
||||
for (cname, cobj) in self._cname_to_constr.items():
|
||||
if cobj.equality:
|
||||
continue
|
||||
result[cname] = cobj.slack()
|
||||
return result
|
||||
|
||||
@overrides
|
||||
def is_infeasible(self) -> bool:
|
||||
return self._termination_condition == TerminationCondition.infeasible
|
||||
|
||||
@overrides
|
||||
def get_dual(self, cid: str) -> float:
|
||||
raise NotImplementedError()
|
||||
constr = self._cname_to_constr[cid]
|
||||
return self._pyomo_solver.dual[constr]
|
||||
|
||||
@overrides
|
||||
def get_sense(self) -> str:
|
||||
@@ -376,45 +381,55 @@ class BasePyomoSolver(InternalSolver):
|
||||
|
||||
return constraints
|
||||
|
||||
@staticmethod
|
||||
def _parse_pyomo_constraint(c: pyomo.core.Constraint) -> Constraint:
|
||||
def _parse_pyomo_constraint(
|
||||
self,
|
||||
pyomo_constr: pyomo.core.Constraint,
|
||||
) -> Constraint:
|
||||
constr = Constraint()
|
||||
|
||||
# Extract RHS and sense
|
||||
has_ub = c.has_ub()
|
||||
has_lb = c.has_lb()
|
||||
has_ub = pyomo_constr.has_ub()
|
||||
has_lb = pyomo_constr.has_lb()
|
||||
assert (
|
||||
(not has_lb) or (not has_ub) or c.upper() == c.lower()
|
||||
(not has_lb) or (not has_ub) or pyomo_constr.upper() == pyomo_constr.lower()
|
||||
), "range constraints not supported"
|
||||
if has_lb:
|
||||
sense = ">"
|
||||
rhs = c.lower()
|
||||
constr.sense = ">"
|
||||
constr.rhs = pyomo_constr.lower()
|
||||
elif has_ub:
|
||||
sense = "<"
|
||||
rhs = c.upper()
|
||||
constr.sense = "<"
|
||||
constr.rhs = pyomo_constr.upper()
|
||||
else:
|
||||
sense = "="
|
||||
rhs = c.upper()
|
||||
constr.sense = "="
|
||||
constr.rhs = pyomo_constr.upper()
|
||||
|
||||
# Extract LHS
|
||||
lhs = {}
|
||||
if isinstance(c.body, SumExpression):
|
||||
for term in c.body._args_:
|
||||
if isinstance(pyomo_constr.body, SumExpression):
|
||||
for term in pyomo_constr.body._args_:
|
||||
if isinstance(term, MonomialTermExpression):
|
||||
lhs[term._args_[1].name] = term._args_[0]
|
||||
elif isinstance(term, _GeneralVarData):
|
||||
lhs[term.name] = 1.0
|
||||
else:
|
||||
raise Exception(f"Unknown term type: {term.__class__.__name__}")
|
||||
elif isinstance(c.body, _GeneralVarData):
|
||||
lhs[c.body.name] = 1.0
|
||||
elif isinstance(pyomo_constr.body, _GeneralVarData):
|
||||
lhs[pyomo_constr.body.name] = 1.0
|
||||
else:
|
||||
raise Exception(f"Unknown expression type: {c.body.__class__.__name__}")
|
||||
raise Exception(
|
||||
f"Unknown expression type: {pyomo_constr.body.__class__.__name__}"
|
||||
)
|
||||
constr.lhs = lhs
|
||||
|
||||
# Extract solution attributes
|
||||
if self._has_lp_solution:
|
||||
constr.dual_value = self.model.dual[pyomo_constr]
|
||||
|
||||
if self._has_mip_solution or self._has_lp_solution:
|
||||
constr.slack = pyomo_constr.slack()
|
||||
|
||||
# Build constraint
|
||||
return Constraint(
|
||||
lhs=lhs,
|
||||
rhs=rhs,
|
||||
sense=sense,
|
||||
)
|
||||
return constr
|
||||
|
||||
@overrides
|
||||
def are_callbacks_supported(self) -> bool:
|
||||
|
||||
@@ -12,6 +12,14 @@ from miplearn.solvers.internal import InternalSolver
|
||||
# This file is in the main source folder, so that it can be called from Julia.
|
||||
|
||||
|
||||
def _round_constraints(constraints):
|
||||
for (cname, c) in constraints.items():
|
||||
for attr in ["slack", "dual_value"]:
|
||||
if getattr(c, attr) is not None:
|
||||
setattr(c, attr, round(getattr(c, attr), 6))
|
||||
return constraints
|
||||
|
||||
|
||||
def run_internal_solver_tests(solver: InternalSolver) -> None:
|
||||
run_basic_usage_tests(solver.clone())
|
||||
run_warm_start_tests(solver.clone())
|
||||
@@ -22,20 +30,38 @@ def run_internal_solver_tests(solver: InternalSolver) -> None:
|
||||
|
||||
|
||||
def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
# Create and set instance
|
||||
instance = solver.build_test_instance_knapsack()
|
||||
model = instance.to_model()
|
||||
solver.set_instance(instance, model)
|
||||
|
||||
# Fetch variables (after-load)
|
||||
assert_equals(
|
||||
solver.get_variable_names(),
|
||||
["x[0]", "x[1]", "x[2]", "x[3]"],
|
||||
)
|
||||
|
||||
# Fetch constraints (after-load)
|
||||
assert_equals(
|
||||
_round_constraints(solver.get_constraints()),
|
||||
{
|
||||
"eq_capacity": Constraint(
|
||||
lazy=False,
|
||||
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
|
||||
rhs=67.0,
|
||||
sense="<",
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
# Solve linear programming relaxation
|
||||
lp_stats = solver.solve_lp()
|
||||
assert not solver.is_infeasible()
|
||||
assert lp_stats["LP value"] is not None
|
||||
assert_equals(round(lp_stats["LP value"], 3), 1287.923)
|
||||
assert len(lp_stats["LP log"]) > 100
|
||||
|
||||
# Fetch variables (after-lp)
|
||||
solution = solver.get_solution()
|
||||
assert solution is not None
|
||||
assert solution["x[0]"] is not None
|
||||
@@ -47,6 +73,22 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
assert_equals(round(solution["x[2]"], 3), 1.000)
|
||||
assert_equals(round(solution["x[3]"], 3), 0.000)
|
||||
|
||||
# Fetch constraints (after-lp)
|
||||
assert_equals(
|
||||
_round_constraints(solver.get_constraints()),
|
||||
{
|
||||
"eq_capacity": Constraint(
|
||||
lazy=False,
|
||||
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
|
||||
rhs=67.0,
|
||||
sense="<",
|
||||
slack=0.0,
|
||||
dual_value=13.538462,
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
# Solve MIP
|
||||
mip_stats = solver.solve(
|
||||
tee=True,
|
||||
iteration_cb=None,
|
||||
@@ -60,6 +102,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
assert_equals(mip_stats["Sense"], "max")
|
||||
assert isinstance(mip_stats["Wallclock time"], float)
|
||||
|
||||
# Fetch variables (after-mip)
|
||||
solution = solver.get_solution()
|
||||
assert solution is not None
|
||||
assert solution["x[0]"] is not None
|
||||
@@ -71,13 +114,15 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
assert_equals(solution["x[2]"], 1.0)
|
||||
assert_equals(solution["x[3]"], 1.0)
|
||||
|
||||
# Fetch constraints (after-mip)
|
||||
assert_equals(
|
||||
solver.get_constraints(),
|
||||
_round_constraints(solver.get_constraints()),
|
||||
{
|
||||
"eq_capacity": Constraint(
|
||||
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
|
||||
rhs=67.0,
|
||||
sense="<",
|
||||
slack=6.0,
|
||||
),
|
||||
},
|
||||
)
|
||||
@@ -86,10 +131,11 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
cut = Constraint(lhs={"x[0]": 1.0}, sense="<", rhs=0.0)
|
||||
assert not solver.is_constraint_satisfied(cut)
|
||||
|
||||
# Add new constraint and verify that it is listed
|
||||
# Add new constraint and verify that it is listed. Modifying the model should
|
||||
# also clear the current solution.
|
||||
solver.add_constraint(cut, "cut")
|
||||
assert_equals(
|
||||
solver.get_constraints(),
|
||||
_round_constraints(solver.get_constraints()),
|
||||
{
|
||||
"eq_capacity": Constraint(
|
||||
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
|
||||
@@ -104,17 +150,11 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
},
|
||||
)
|
||||
|
||||
# New constraint should affect the solution
|
||||
# Re-solve MIP and verify that constraint affects the solution
|
||||
stats = solver.solve()
|
||||
assert_equals(stats["Lower bound"], 1030.0)
|
||||
assert solver.is_constraint_satisfied(cut)
|
||||
|
||||
# Verify slacks
|
||||
assert_equals(
|
||||
solver.get_inequality_slacks(),
|
||||
{"cut": 0.0, "eq_capacity": 3.0},
|
||||
)
|
||||
|
||||
# Remove the new constraint
|
||||
solver.remove_constraint("cut")
|
||||
|
||||
@@ -122,9 +162,6 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
stats = solver.solve()
|
||||
assert_equals(stats["Lower bound"], 1183.0)
|
||||
|
||||
# Constraint should not be satisfied by current solution
|
||||
assert not solver.is_constraint_satisfied(cut)
|
||||
|
||||
|
||||
def run_warm_start_tests(solver: InternalSolver) -> None:
|
||||
instance = solver.build_test_instance_knapsack()
|
||||
|
||||
Reference in New Issue
Block a user