get_constraints: Fetch slack and dual values

master
Alinson S. Xavier 5 years ago
parent 088d679f61
commit b5e602cdc1
No known key found for this signature in database
GPG Key ID: DCA0DAD4D2F58624

@ -43,12 +43,17 @@ class VariableFeatures:
@dataclass
class Constraint:
rhs: float = 0.0
basis_status: Optional[str] = None
category: Optional[Hashable] = None
dual_value: Optional[float] = None
lazy: bool = False
lhs: Dict[str, float] = lambda: {} # type: ignore
rhs: float = 0.0
sa_rhs_down: Optional[float] = None
sa_rhs_up: Optional[float] = None
sense: str = "<"
slack: Optional[float] = None
user_features: Optional[List[float]] = None
lazy: bool = False
category: Hashable = None
@dataclass

@ -5,6 +5,7 @@ import logging
import re
import sys
from dataclasses import dataclass
from enum import Enum
from io import StringIO
from random import randint
from typing import List, Any, Dict, Optional, Hashable
@ -68,6 +69,9 @@ class GurobiSolver(InternalSolver):
self.lazy_cb_frequency = lazy_cb_frequency
self._bin_vars: List["gurobipy.Var"] = []
self._varname_to_var: Dict[str, "gurobipy.Var"] = {}
self._dirty = True
self._has_lp_solution = False
self._has_mip_solution = False
if self.lazy_cb_frequency == 1:
self.lazy_cb_where = [self.gp.GRB.Callback.MIPSOL]
@ -136,9 +140,12 @@ class GurobiSolver(InternalSolver):
var.ub = 1.0
with _RedirectOutput(streams):
self.model.optimize()
self._dirty = False
for var in self._bin_vars:
var.vtype = self.gp.GRB.BINARY
log = streams[0].getvalue()
self._has_lp_solution = self.model.solCount > 0
self._has_mip_solution = False
opt_value = None
if not self.is_infeasible():
opt_value = self.model.objVal
@ -191,6 +198,7 @@ class GurobiSolver(InternalSolver):
while True:
with _RedirectOutput(streams):
self.model.optimize(cb_wrapper)
self._dirty = False
if len(callback_exceptions) > 0:
raise callback_exceptions[0]
total_wallclock_time += self.model.runtime
@ -198,6 +206,8 @@ class GurobiSolver(InternalSolver):
should_repeat = iteration_cb()
if not should_repeat:
break
self._has_lp_solution = False
self._has_mip_solution = self.model.solCount > 0
# Fetch results and stats
log = streams[0].getvalue()
@ -306,6 +316,9 @@ class GurobiSolver(InternalSolver):
self.model.addConstr(lhs <= constr.rhs, name=name)
else:
self.model.addConstr(lhs >= constr.rhs, name=name)
self._dirty = True
self._has_lp_solution = False
self._has_mip_solution = False
@overrides
def remove_constraint(self, name: str) -> None:
@ -341,12 +354,6 @@ class GurobiSolver(InternalSolver):
var.lb = value
var.ub = value
@overrides
def get_inequality_slacks(self) -> Dict[str, float]:
assert self.model is not None
ineqs = [c for c in self.model.getConstrs() if c.sense != "="]
return {c.ConstrName: c.Slack for c in ineqs}
@overrides
def relax(self) -> None:
assert self.model is not None
@ -414,7 +421,9 @@ class GurobiSolver(InternalSolver):
def get_constraints(self) -> Dict[str, Constraint]:
assert self.model is not None
self._raise_if_callback()
self.model.update()
if self._dirty:
self.model.update()
self._dirty = False
constraints: Dict[str, Constraint] = {}
for c in self.model.getConstrs():
constr = self._parse_gurobi_constraint(c)
@ -422,13 +431,22 @@ class GurobiSolver(InternalSolver):
constraints[c.constrName] = constr
return constraints
def _parse_gurobi_constraint(self, c: Any) -> Constraint:
def _parse_gurobi_constraint(self, gp_constr: Any) -> Constraint:
assert self.model is not None
expr = self.model.getRow(c)
expr = self.model.getRow(gp_constr)
lhs: Dict[str, float] = {}
for i in range(expr.size()):
lhs[expr.getVar(i).varName] = expr.getCoeff(i)
return Constraint(rhs=c.rhs, lhs=lhs, sense=c.sense)
constr = Constraint(
rhs=gp_constr.rhs,
lhs=lhs,
sense=gp_constr.sense,
)
if self._has_lp_solution:
constr.dual_value = gp_constr.pi
if self._has_lp_solution or self._has_mip_solution:
constr.slack = gp_constr.slack
return constr
@overrides
def are_callbacks_supported(self) -> bool:

@ -184,14 +184,6 @@ class InternalSolver(ABC, EnforceOverrides):
"""
pass
@abstractmethod
def get_inequality_slacks(self) -> Dict[str, float]:
"""
Returns a dictionary mapping constraint name to the constraint slack
in the current solution.
"""
pass
@abstractmethod
def is_infeasible(self) -> bool:
"""

@ -12,7 +12,7 @@ import numpy as np
import pyomo
from overrides import overrides
from pyomo import environ as pe
from pyomo.core import Var
from pyomo.core import Var, Suffix
from pyomo.core.base import _GeneralVarData
from pyomo.core.base.constraint import ConstraintList
from pyomo.core.expr.numeric_expr import SumExpression, MonomialTermExpression
@ -61,6 +61,8 @@ class BasePyomoSolver(InternalSolver):
self._varname_to_var: Dict[str, pe.Var] = {}
self._cname_to_constr: Dict[str, pe.Constraint] = {}
self._termination_condition: str = ""
self._has_lp_solution = False
self._has_mip_solution = False
for (key, value) in params.items():
self._pyomo_solver.options[key] = value
@ -76,10 +78,14 @@ class BasePyomoSolver(InternalSolver):
streams += [sys.stdout]
with _RedirectOutput(streams):
results = self._pyomo_solver.solve(tee=True)
self._termination_condition = results["Solver"][0]["Termination condition"]
self._restore_integrality()
opt_value = None
self._has_lp_solution = False
self._has_mip_solution = False
if not self.is_infeasible():
opt_value = results["Problem"][0]["Lower bound"]
self._has_lp_solution = True
return {
"LP value": opt_value,
"LP log": streams[0].getvalue(),
@ -122,7 +128,10 @@ class BasePyomoSolver(InternalSolver):
ws_value = self._extract_warm_start_value(log)
self._termination_condition = results["Solver"][0]["Termination condition"]
lb, ub = None, None
self._has_mip_solution = False
self._has_lp_solution = False
if not self.is_infeasible():
self._has_mip_solution = True
lb = results["Problem"][0]["Lower bound"]
ub = results["Problem"][0]["Upper bound"]
stats: MIPSolveStats = {
@ -185,6 +194,7 @@ class BasePyomoSolver(InternalSolver):
self.instance = instance
self.model = model
self.model.extra_constraints = ConstraintList()
self.model.dual = Suffix(direction=Suffix.IMPORT)
self._pyomo_solver.set_instance(model)
self._update_obj()
self._update_vars()
@ -256,6 +266,9 @@ class BasePyomoSolver(InternalSolver):
self._cname_to_constr[name] = cl
else:
self._pyomo_solver.add_constraint(constr)
self._termination_condition = ""
self._has_lp_solution = False
self._has_mip_solution = False
@overrides
def remove_constraint(self, name: str) -> None:
@ -321,22 +334,14 @@ class BasePyomoSolver(InternalSolver):
var.domain = pyomo.core.base.set_types.Reals
self._pyomo_solver.update_var(var)
@overrides
def get_inequality_slacks(self) -> Dict[str, float]:
result: Dict[str, float] = {}
for (cname, cobj) in self._cname_to_constr.items():
if cobj.equality:
continue
result[cname] = cobj.slack()
return result
@overrides
def is_infeasible(self) -> bool:
return self._termination_condition == TerminationCondition.infeasible
@overrides
def get_dual(self, cid: str) -> float:
raise NotImplementedError()
constr = self._cname_to_constr[cid]
return self._pyomo_solver.dual[constr]
@overrides
def get_sense(self) -> str:
@ -376,45 +381,55 @@ class BasePyomoSolver(InternalSolver):
return constraints
@staticmethod
def _parse_pyomo_constraint(c: pyomo.core.Constraint) -> Constraint:
def _parse_pyomo_constraint(
self,
pyomo_constr: pyomo.core.Constraint,
) -> Constraint:
constr = Constraint()
# Extract RHS and sense
has_ub = c.has_ub()
has_lb = c.has_lb()
has_ub = pyomo_constr.has_ub()
has_lb = pyomo_constr.has_lb()
assert (
(not has_lb) or (not has_ub) or c.upper() == c.lower()
(not has_lb) or (not has_ub) or pyomo_constr.upper() == pyomo_constr.lower()
), "range constraints not supported"
if has_lb:
sense = ">"
rhs = c.lower()
constr.sense = ">"
constr.rhs = pyomo_constr.lower()
elif has_ub:
sense = "<"
rhs = c.upper()
constr.sense = "<"
constr.rhs = pyomo_constr.upper()
else:
sense = "="
rhs = c.upper()
constr.sense = "="
constr.rhs = pyomo_constr.upper()
# Extract LHS
lhs = {}
if isinstance(c.body, SumExpression):
for term in c.body._args_:
if isinstance(pyomo_constr.body, SumExpression):
for term in pyomo_constr.body._args_:
if isinstance(term, MonomialTermExpression):
lhs[term._args_[1].name] = term._args_[0]
elif isinstance(term, _GeneralVarData):
lhs[term.name] = 1.0
else:
raise Exception(f"Unknown term type: {term.__class__.__name__}")
elif isinstance(c.body, _GeneralVarData):
lhs[c.body.name] = 1.0
elif isinstance(pyomo_constr.body, _GeneralVarData):
lhs[pyomo_constr.body.name] = 1.0
else:
raise Exception(f"Unknown expression type: {c.body.__class__.__name__}")
raise Exception(
f"Unknown expression type: {pyomo_constr.body.__class__.__name__}"
)
constr.lhs = lhs
# Extract solution attributes
if self._has_lp_solution:
constr.dual_value = self.model.dual[pyomo_constr]
if self._has_mip_solution or self._has_lp_solution:
constr.slack = pyomo_constr.slack()
# Build constraint
return Constraint(
lhs=lhs,
rhs=rhs,
sense=sense,
)
return constr
@overrides
def are_callbacks_supported(self) -> bool:

@ -12,6 +12,14 @@ from miplearn.solvers.internal import InternalSolver
# This file is in the main source folder, so that it can be called from Julia.
def _round_constraints(constraints):
for (cname, c) in constraints.items():
for attr in ["slack", "dual_value"]:
if getattr(c, attr) is not None:
setattr(c, attr, round(getattr(c, attr), 6))
return constraints
def run_internal_solver_tests(solver: InternalSolver) -> None:
run_basic_usage_tests(solver.clone())
run_warm_start_tests(solver.clone())
@ -22,20 +30,38 @@ def run_internal_solver_tests(solver: InternalSolver) -> None:
def run_basic_usage_tests(solver: InternalSolver) -> None:
# Create and set instance
instance = solver.build_test_instance_knapsack()
model = instance.to_model()
solver.set_instance(instance, model)
# Fetch variables (after-load)
assert_equals(
solver.get_variable_names(),
["x[0]", "x[1]", "x[2]", "x[3]"],
)
# Fetch constraints (after-load)
assert_equals(
_round_constraints(solver.get_constraints()),
{
"eq_capacity": Constraint(
lazy=False,
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
rhs=67.0,
sense="<",
)
},
)
# Solve linear programming relaxation
lp_stats = solver.solve_lp()
assert not solver.is_infeasible()
assert lp_stats["LP value"] is not None
assert_equals(round(lp_stats["LP value"], 3), 1287.923)
assert len(lp_stats["LP log"]) > 100
# Fetch variables (after-lp)
solution = solver.get_solution()
assert solution is not None
assert solution["x[0]"] is not None
@ -47,6 +73,22 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
assert_equals(round(solution["x[2]"], 3), 1.000)
assert_equals(round(solution["x[3]"], 3), 0.000)
# Fetch constraints (after-lp)
assert_equals(
_round_constraints(solver.get_constraints()),
{
"eq_capacity": Constraint(
lazy=False,
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
rhs=67.0,
sense="<",
slack=0.0,
dual_value=13.538462,
)
},
)
# Solve MIP
mip_stats = solver.solve(
tee=True,
iteration_cb=None,
@ -60,6 +102,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
assert_equals(mip_stats["Sense"], "max")
assert isinstance(mip_stats["Wallclock time"], float)
# Fetch variables (after-mip)
solution = solver.get_solution()
assert solution is not None
assert solution["x[0]"] is not None
@ -71,13 +114,15 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
assert_equals(solution["x[2]"], 1.0)
assert_equals(solution["x[3]"], 1.0)
# Fetch constraints (after-mip)
assert_equals(
solver.get_constraints(),
_round_constraints(solver.get_constraints()),
{
"eq_capacity": Constraint(
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
rhs=67.0,
sense="<",
slack=6.0,
),
},
)
@ -86,10 +131,11 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
cut = Constraint(lhs={"x[0]": 1.0}, sense="<", rhs=0.0)
assert not solver.is_constraint_satisfied(cut)
# Add new constraint and verify that it is listed
# Add new constraint and verify that it is listed. Modifying the model should
# also clear the current solution.
solver.add_constraint(cut, "cut")
assert_equals(
solver.get_constraints(),
_round_constraints(solver.get_constraints()),
{
"eq_capacity": Constraint(
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
@ -104,17 +150,11 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
},
)
# New constraint should affect the solution
# Re-solve MIP and verify that constraint affects the solution
stats = solver.solve()
assert_equals(stats["Lower bound"], 1030.0)
assert solver.is_constraint_satisfied(cut)
# Verify slacks
assert_equals(
solver.get_inequality_slacks(),
{"cut": 0.0, "eq_capacity": 3.0},
)
# Remove the new constraint
solver.remove_constraint("cut")
@ -122,9 +162,6 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
stats = solver.solve()
assert_equals(stats["Lower bound"], 1183.0)
# Constraint should not be satisfied by current solution
assert not solver.is_constraint_satisfied(cut)
def run_warm_start_tests(solver: InternalSolver) -> None:
instance = solver.build_test_instance_knapsack()

Loading…
Cancel
Save