mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Include objective sense in benchmark file; update charts
This commit is contained in:
@@ -114,6 +114,13 @@ def charts():
|
||||
benchmark.load_results("%s/benchmark_ml.csv" % basepath)
|
||||
results = benchmark.raw_results()
|
||||
results["Gap (%)"] = results["Gap"] * 100.0
|
||||
|
||||
sense = results.loc[0, "Sense"]
|
||||
if sense == "min":
|
||||
primal_column = "Relative Upper Bound"
|
||||
else:
|
||||
primal_column = "Relative Lower Bound"
|
||||
|
||||
palette={
|
||||
"baseline": "#9b59b6",
|
||||
"ml-exact": "#3498db",
|
||||
@@ -151,7 +158,7 @@ def charts():
|
||||
);
|
||||
axes[2].set_ylim(0.95,1.01)
|
||||
sns.stripplot(x="Solver",
|
||||
y="Relative Lower Bound",
|
||||
y=primal_column,
|
||||
jitter=0.25,
|
||||
data=results[results["Solver"] == "ml-heuristic"],
|
||||
ax=axes[2],
|
||||
|
||||
@@ -31,7 +31,10 @@ class BenchmarkRunner:
|
||||
label="Solve (%s)" % name,
|
||||
collect_training_data=False)
|
||||
for i in range(len(instances)):
|
||||
self._push_result(results[i], solver=solver, name=name, instance=i)
|
||||
self._push_result(results[i],
|
||||
solver=solver,
|
||||
name=name,
|
||||
instance=i)
|
||||
|
||||
def raw_results(self):
|
||||
return self.results
|
||||
@@ -60,6 +63,7 @@ class BenchmarkRunner:
|
||||
"Gap",
|
||||
"Nodes",
|
||||
"Mode",
|
||||
"Sense",
|
||||
])
|
||||
lb = result["Lower bound"]
|
||||
ub = result["Upper bound"]
|
||||
@@ -73,6 +77,7 @@ class BenchmarkRunner:
|
||||
"Gap": gap,
|
||||
"Nodes": result["Nodes"],
|
||||
"Mode": solver.mode,
|
||||
"Sense": result["Sense"],
|
||||
}, ignore_index=True)
|
||||
groups = self.results.groupby("Instance")
|
||||
best_lower_bound = groups["Lower Bound"].transform("max")
|
||||
|
||||
@@ -94,8 +94,13 @@ class InternalSolver:
|
||||
(count_fixed, count_total))
|
||||
|
||||
def set_model(self, model):
|
||||
from pyomo.core.kernel.objective import minimize, maximize
|
||||
self.model = model
|
||||
self.solver.set_instance(model)
|
||||
if self.solver._objective.sense == minimize:
|
||||
self.sense = "min"
|
||||
else:
|
||||
self.sense = "max"
|
||||
self.var_name_to_var = {}
|
||||
for var in model.component_objects(Var):
|
||||
self.var_name_to_var[var.name] = var
|
||||
@@ -140,6 +145,7 @@ class GurobiSolver(InternalSolver):
|
||||
"Upper bound": results["Problem"][0]["Upper bound"],
|
||||
"Wallclock time": results["Solver"][0]["Wallclock time"],
|
||||
"Nodes": self.solver._solver_model.getAttr("NodeCount"),
|
||||
"Sense": self.sense,
|
||||
}
|
||||
|
||||
def _load_vars(self):
|
||||
@@ -179,6 +185,7 @@ class CPLEXSolver(InternalSolver):
|
||||
"Upper bound": results["Problem"][0]["Upper bound"],
|
||||
"Wallclock time": results["Solver"][0]["Wallclock time"],
|
||||
"Nodes": 1,
|
||||
"Sense": self.sense,
|
||||
}
|
||||
|
||||
def solve_lp(self, tee=False):
|
||||
|
||||
Reference in New Issue
Block a user