Document and simplify Classifier and Regressor

This commit is contained in:
2021-01-22 09:06:04 -06:00
parent f90d78f802
commit b87ef651e1
4 changed files with 123 additions and 18 deletions

View File

@@ -35,7 +35,9 @@ def test_cv():
cv=30,
)
clf.fit(x_train, y_train)
assert norm(np.zeros(n_samples) - clf.predict(x_train)) < E
proba = clf.predict_proba(x_train)
y_pred = (proba[:, 1] > 0.5).astype(float)
assert norm(np.zeros(n_samples) - y_pred) < E
# Support vector machines with quadratic kernels perform almost perfectly
# on this data set, so predictor should return their prediction.
@@ -45,5 +47,6 @@ def test_cv():
cv=30,
)
clf.fit(x_train, y_train)
print(y_train - clf.predict(x_train))
assert norm(y_train - clf.predict(x_train)) < E
proba = clf.predict_proba(x_train)
y_pred = (proba[:, 1] > 0.5).astype(float)
assert norm(y_train - y_pred) < E