|
|
@ -19,7 +19,7 @@ class ChallengeA:
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
|
|
def __init__(self,
|
|
|
|
seed=42,
|
|
|
|
seed=42,
|
|
|
|
n_training_instances=300,
|
|
|
|
n_training_instances=500,
|
|
|
|
n_test_instances=50):
|
|
|
|
n_test_instances=50):
|
|
|
|
|
|
|
|
|
|
|
|
np.random.seed(seed)
|
|
|
|
np.random.seed(seed)
|
|
|
@ -81,16 +81,18 @@ class MultiKnapsackInstance(Instance):
|
|
|
|
|
|
|
|
|
|
|
|
def get_instance_features(self):
|
|
|
|
def get_instance_features(self):
|
|
|
|
return np.hstack([
|
|
|
|
return np.hstack([
|
|
|
|
self.prices,
|
|
|
|
np.mean(self.prices),
|
|
|
|
self.capacities,
|
|
|
|
self.capacities,
|
|
|
|
self.weights.ravel(),
|
|
|
|
|
|
|
|
])
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
|
|
def get_variable_features(self, var, index):
|
|
|
|
def get_variable_features(self, var, index):
|
|
|
|
return np.array([])
|
|
|
|
return np.hstack([
|
|
|
|
|
|
|
|
self.prices[index],
|
|
|
|
|
|
|
|
self.weights[:, index],
|
|
|
|
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
|
|
def get_variable_category(self, var, index):
|
|
|
|
# def get_variable_category(self, var, index):
|
|
|
|
return index
|
|
|
|
# return index
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MultiKnapsackGenerator:
|
|
|
|
class MultiKnapsackGenerator:
|
|
|
@ -212,4 +214,34 @@ class MultiKnapsackGenerator:
|
|
|
|
return MultiKnapsackInstance(p, b, w)
|
|
|
|
return MultiKnapsackInstance(p, b, w)
|
|
|
|
return [_sample() for _ in range(n_samples)]
|
|
|
|
return [_sample() for _ in range(n_samples)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class KnapsackInstance(Instance):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Simpler (one-dimensional) Knapsack Problem, used for testing.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, weights, prices, capacity):
|
|
|
|
|
|
|
|
self.weights = weights
|
|
|
|
|
|
|
|
self.prices = prices
|
|
|
|
|
|
|
|
self.capacity = capacity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def to_model(self):
|
|
|
|
|
|
|
|
model = pe.ConcreteModel()
|
|
|
|
|
|
|
|
items = range(len(self.weights))
|
|
|
|
|
|
|
|
model.x = pe.Var(items, domain=pe.Binary)
|
|
|
|
|
|
|
|
model.OBJ = pe.Objective(rule=lambda m: sum(m.x[v] * self.prices[v] for v in items),
|
|
|
|
|
|
|
|
sense=pe.maximize)
|
|
|
|
|
|
|
|
model.eq_capacity = pe.Constraint(rule=lambda m: sum(m.x[v] * self.weights[v]
|
|
|
|
|
|
|
|
for v in items) <= self.capacity)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_instance_features(self):
|
|
|
|
|
|
|
|
return np.array([
|
|
|
|
|
|
|
|
self.capacity,
|
|
|
|
|
|
|
|
np.average(self.weights),
|
|
|
|
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_variable_features(self, var, index):
|
|
|
|
|
|
|
|
return np.array([
|
|
|
|
|
|
|
|
self.weights[index],
|
|
|
|
|
|
|
|
self.prices[index],
|
|
|
|
|
|
|
|
])
|