mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Knapsack: change encoding; add simpler class for tests
This commit is contained in:
@@ -19,7 +19,7 @@ class ChallengeA:
|
|||||||
"""
|
"""
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
seed=42,
|
seed=42,
|
||||||
n_training_instances=300,
|
n_training_instances=500,
|
||||||
n_test_instances=50):
|
n_test_instances=50):
|
||||||
|
|
||||||
np.random.seed(seed)
|
np.random.seed(seed)
|
||||||
@@ -81,16 +81,18 @@ class MultiKnapsackInstance(Instance):
|
|||||||
|
|
||||||
def get_instance_features(self):
|
def get_instance_features(self):
|
||||||
return np.hstack([
|
return np.hstack([
|
||||||
self.prices,
|
np.mean(self.prices),
|
||||||
self.capacities,
|
self.capacities,
|
||||||
self.weights.ravel(),
|
|
||||||
])
|
])
|
||||||
|
|
||||||
def get_variable_features(self, var, index):
|
def get_variable_features(self, var, index):
|
||||||
return np.array([])
|
return np.hstack([
|
||||||
|
self.prices[index],
|
||||||
|
self.weights[:, index],
|
||||||
|
])
|
||||||
|
|
||||||
def get_variable_category(self, var, index):
|
# def get_variable_category(self, var, index):
|
||||||
return index
|
# return index
|
||||||
|
|
||||||
|
|
||||||
class MultiKnapsackGenerator:
|
class MultiKnapsackGenerator:
|
||||||
@@ -212,4 +214,34 @@ class MultiKnapsackGenerator:
|
|||||||
return MultiKnapsackInstance(p, b, w)
|
return MultiKnapsackInstance(p, b, w)
|
||||||
return [_sample() for _ in range(n_samples)]
|
return [_sample() for _ in range(n_samples)]
|
||||||
|
|
||||||
|
|
||||||
|
class KnapsackInstance(Instance):
|
||||||
|
"""
|
||||||
|
Simpler (one-dimensional) Knapsack Problem, used for testing.
|
||||||
|
"""
|
||||||
|
def __init__(self, weights, prices, capacity):
|
||||||
|
self.weights = weights
|
||||||
|
self.prices = prices
|
||||||
|
self.capacity = capacity
|
||||||
|
|
||||||
|
def to_model(self):
|
||||||
|
model = pe.ConcreteModel()
|
||||||
|
items = range(len(self.weights))
|
||||||
|
model.x = pe.Var(items, domain=pe.Binary)
|
||||||
|
model.OBJ = pe.Objective(rule=lambda m: sum(m.x[v] * self.prices[v] for v in items),
|
||||||
|
sense=pe.maximize)
|
||||||
|
model.eq_capacity = pe.Constraint(rule=lambda m: sum(m.x[v] * self.weights[v]
|
||||||
|
for v in items) <= self.capacity)
|
||||||
|
return model
|
||||||
|
|
||||||
|
def get_instance_features(self):
|
||||||
|
return np.array([
|
||||||
|
self.capacity,
|
||||||
|
np.average(self.weights),
|
||||||
|
])
|
||||||
|
|
||||||
|
def get_variable_features(self, var, index):
|
||||||
|
return np.array([
|
||||||
|
self.weights[index],
|
||||||
|
self.prices[index],
|
||||||
|
])
|
||||||
@@ -25,24 +25,6 @@ def test_knapsack_generator():
|
|||||||
assert round(np.mean(b_sum), -3) == 25000.
|
assert round(np.mean(b_sum), -3) == 25000.
|
||||||
|
|
||||||
|
|
||||||
def test_knapsack_instance():
|
|
||||||
instance = MultiKnapsackInstance(
|
|
||||||
prices=np.array([5.0, 10.0, 15.0]),
|
|
||||||
capacities=np.array([20.0, 30.0]),
|
|
||||||
weights=np.array([
|
|
||||||
[5.0, 5.0, 5.0],
|
|
||||||
[5.0, 10.0, 15.0],
|
|
||||||
])
|
|
||||||
)
|
|
||||||
|
|
||||||
assert (instance.get_instance_features() == np.array([
|
|
||||||
5.0, 10.0, 15.0, 20.0, 30.0, 5.0, 5.0, 5.0, 5.0, 10.0, 15.0
|
|
||||||
])).all()
|
|
||||||
|
|
||||||
solver = LearningSolver()
|
|
||||||
results = solver.solve(instance)
|
|
||||||
assert results["Problem"][0]["Lower bound"] == 30.0
|
|
||||||
|
|
||||||
def test_knapsack_fixed_weights_jitter():
|
def test_knapsack_fixed_weights_jitter():
|
||||||
gen = MultiKnapsackGenerator(n=randint(low=50, high=51),
|
gen = MultiKnapsackGenerator(n=randint(low=50, high=51),
|
||||||
m=randint(low=10, high=11),
|
m=randint(low=10, high=11),
|
||||||
|
|||||||
Reference in New Issue
Block a user