mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Rewrite StaticLazy.sample_xy
This commit is contained in:
@@ -12,7 +12,7 @@ from miplearn.classifiers import Classifier
|
|||||||
from miplearn.classifiers.counting import CountingClassifier
|
from miplearn.classifiers.counting import CountingClassifier
|
||||||
from miplearn.classifiers.threshold import MinProbabilityThreshold, Threshold
|
from miplearn.classifiers.threshold import MinProbabilityThreshold, Threshold
|
||||||
from miplearn.components.component import Component
|
from miplearn.components.component import Component
|
||||||
from miplearn.features import TrainingSample, Features, Constraint
|
from miplearn.features import TrainingSample, Features, Constraint, Sample
|
||||||
from miplearn.types import LearningSolveStats
|
from miplearn.types import LearningSolveStats
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@@ -199,6 +199,46 @@ class StaticLazyConstraintsComponent(Component):
|
|||||||
y[category] += [[True, False]]
|
y[category] += [[True, False]]
|
||||||
return x, y
|
return x, y
|
||||||
|
|
||||||
|
@overrides
|
||||||
|
def sample_xy(
|
||||||
|
self,
|
||||||
|
sample: Sample,
|
||||||
|
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
|
||||||
|
x: Dict = {}
|
||||||
|
y: Dict = {}
|
||||||
|
assert sample.after_load is not None
|
||||||
|
assert sample.after_load.constraints is not None
|
||||||
|
for (cid, constr) in sample.after_load.constraints.items():
|
||||||
|
# Initialize categories
|
||||||
|
if not constr.lazy:
|
||||||
|
continue
|
||||||
|
category = constr.category
|
||||||
|
if category is None:
|
||||||
|
continue
|
||||||
|
if category not in x:
|
||||||
|
x[category] = []
|
||||||
|
y[category] = []
|
||||||
|
|
||||||
|
# Features
|
||||||
|
sf = sample.after_load
|
||||||
|
if sample.after_lp is not None:
|
||||||
|
sf = sample.after_lp
|
||||||
|
assert sf.instance is not None
|
||||||
|
features = list(sf.instance.to_list())
|
||||||
|
assert sf.constraints is not None
|
||||||
|
assert sf.constraints[cid] is not None
|
||||||
|
features.extend(sf.constraints[cid].to_list())
|
||||||
|
x[category].append(features)
|
||||||
|
|
||||||
|
# Labels
|
||||||
|
if sample.after_mip is not None:
|
||||||
|
assert sample.after_mip.extra is not None
|
||||||
|
if cid in sample.after_mip.extra["lazy_enforced"]:
|
||||||
|
y[category] += [[False, True]]
|
||||||
|
else:
|
||||||
|
y[category] += [[True, False]]
|
||||||
|
return x, y
|
||||||
|
|
||||||
@overrides
|
@overrides
|
||||||
def fit_xy(
|
def fit_xy(
|
||||||
self,
|
self,
|
||||||
|
|||||||
@@ -130,6 +130,7 @@ class Features:
|
|||||||
constraints: Optional[Dict[str, Constraint]] = None
|
constraints: Optional[Dict[str, Constraint]] = None
|
||||||
lp_solve: Optional["LPSolveStats"] = None
|
lp_solve: Optional["LPSolveStats"] = None
|
||||||
mip_solve: Optional["MIPSolveStats"] = None
|
mip_solve: Optional["MIPSolveStats"] = None
|
||||||
|
extra: Optional[Dict] = None
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
|
|||||||
@@ -16,6 +16,7 @@ from miplearn.features import (
|
|||||||
InstanceFeatures,
|
InstanceFeatures,
|
||||||
Features,
|
Features,
|
||||||
Constraint,
|
Constraint,
|
||||||
|
Sample,
|
||||||
)
|
)
|
||||||
from miplearn.instance.base import Instance
|
from miplearn.instance.base import Instance
|
||||||
from miplearn.solvers.internal import InternalSolver
|
from miplearn.solvers.internal import InternalSolver
|
||||||
@@ -25,6 +26,50 @@ from miplearn.types import (
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def sample() -> Sample:
|
||||||
|
sample = Sample(
|
||||||
|
after_load=Features(
|
||||||
|
constraints={
|
||||||
|
"c1": Constraint(category="type-a", lazy=True),
|
||||||
|
"c2": Constraint(category="type-a", lazy=True),
|
||||||
|
"c3": Constraint(category="type-a", lazy=True),
|
||||||
|
"c4": Constraint(category="type-b", lazy=True),
|
||||||
|
"c5": Constraint(category="type-b", lazy=False),
|
||||||
|
}
|
||||||
|
),
|
||||||
|
after_lp=Features(
|
||||||
|
instance=InstanceFeatures(),
|
||||||
|
constraints={
|
||||||
|
"c1": Constraint(),
|
||||||
|
"c2": Constraint(),
|
||||||
|
"c3": Constraint(),
|
||||||
|
"c4": Constraint(),
|
||||||
|
"c5": Constraint(),
|
||||||
|
},
|
||||||
|
),
|
||||||
|
after_mip=Features(
|
||||||
|
extra={
|
||||||
|
"lazy_enforced": {"c1", "c2", "c4"},
|
||||||
|
}
|
||||||
|
),
|
||||||
|
)
|
||||||
|
sample.after_lp.instance.to_list = Mock(return_value=[5.0]) # type: ignore
|
||||||
|
sample.after_lp.constraints["c1"].to_list = Mock( # type: ignore
|
||||||
|
return_value=[1.0, 1.0]
|
||||||
|
)
|
||||||
|
sample.after_lp.constraints["c2"].to_list = Mock( # type: ignore
|
||||||
|
return_value=[1.0, 2.0]
|
||||||
|
)
|
||||||
|
sample.after_lp.constraints["c3"].to_list = Mock( # type: ignore
|
||||||
|
return_value=[1.0, 3.0]
|
||||||
|
)
|
||||||
|
sample.after_lp.constraints["c4"].to_list = Mock( # type: ignore
|
||||||
|
return_value=[1.0, 4.0, 0.0]
|
||||||
|
)
|
||||||
|
return sample
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
def instance(features: Features) -> Instance:
|
def instance(features: Features) -> Instance:
|
||||||
instance = Mock(spec=Instance)
|
instance = Mock(spec=Instance)
|
||||||
@@ -34,7 +79,7 @@ def instance(features: Features) -> Instance:
|
|||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
def sample() -> TrainingSample:
|
def sample2() -> TrainingSample:
|
||||||
return TrainingSample(
|
return TrainingSample(
|
||||||
lazy_enforced={"c1", "c2", "c4"},
|
lazy_enforced={"c1", "c2", "c4"},
|
||||||
)
|
)
|
||||||
@@ -112,7 +157,7 @@ def test_usage_with_solver(instance: Instance) -> None:
|
|||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
sample: TrainingSample = TrainingSample()
|
sample2: TrainingSample = TrainingSample()
|
||||||
stats: LearningSolveStats = {}
|
stats: LearningSolveStats = {}
|
||||||
|
|
||||||
# LearningSolver calls before_solve_mip
|
# LearningSolver calls before_solve_mip
|
||||||
@@ -122,7 +167,7 @@ def test_usage_with_solver(instance: Instance) -> None:
|
|||||||
model=None,
|
model=None,
|
||||||
stats=stats,
|
stats=stats,
|
||||||
features=instance.features,
|
features=instance.features,
|
||||||
training_data=sample,
|
training_data=sample2,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Should ask ML to predict whether each lazy constraint should be enforced
|
# Should ask ML to predict whether each lazy constraint should be enforced
|
||||||
@@ -160,11 +205,11 @@ def test_usage_with_solver(instance: Instance) -> None:
|
|||||||
model=None,
|
model=None,
|
||||||
stats=stats,
|
stats=stats,
|
||||||
features=instance.features,
|
features=instance.features,
|
||||||
training_data=sample,
|
training_data=sample2,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Should update training sample
|
# Should update training sample
|
||||||
assert sample.lazy_enforced == {"c1", "c2", "c3", "c4"}
|
assert sample2.lazy_enforced == {"c1", "c2", "c3", "c4"}
|
||||||
|
|
||||||
# Should update stats
|
# Should update stats
|
||||||
assert stats["LazyStatic: Removed"] == 1
|
assert stats["LazyStatic: Removed"] == 1
|
||||||
@@ -175,7 +220,7 @@ def test_usage_with_solver(instance: Instance) -> None:
|
|||||||
|
|
||||||
def test_sample_predict(
|
def test_sample_predict(
|
||||||
instance: Instance,
|
instance: Instance,
|
||||||
sample: TrainingSample,
|
sample2: TrainingSample,
|
||||||
) -> None:
|
) -> None:
|
||||||
comp = StaticLazyConstraintsComponent()
|
comp = StaticLazyConstraintsComponent()
|
||||||
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
||||||
@@ -194,7 +239,7 @@ def test_sample_predict(
|
|||||||
[0.0, 1.0], # c4
|
[0.0, 1.0], # c4
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
pred = comp.sample_predict(instance, sample)
|
pred = comp.sample_predict(instance, sample2)
|
||||||
assert pred == ["c1", "c2", "c4"]
|
assert pred == ["c1", "c2", "c4"]
|
||||||
|
|
||||||
|
|
||||||
@@ -238,19 +283,16 @@ def test_fit_xy() -> None:
|
|||||||
assert thr_b.fit.call_args[0][0] == clf_b # type: ignore
|
assert thr_b.fit.call_args[0][0] == clf_b # type: ignore
|
||||||
|
|
||||||
|
|
||||||
def test_sample_xy(
|
def test_sample_xy(sample: Sample) -> None:
|
||||||
instance: Instance,
|
|
||||||
sample: TrainingSample,
|
|
||||||
) -> None:
|
|
||||||
x_expected = {
|
x_expected = {
|
||||||
"type-a": [[1.0, 1.0], [1.0, 2.0], [1.0, 3.0]],
|
"type-a": [[5.0, 1.0, 1.0], [5.0, 1.0, 2.0], [5.0, 1.0, 3.0]],
|
||||||
"type-b": [[1.0, 4.0, 0.0]],
|
"type-b": [[5.0, 1.0, 4.0, 0.0]],
|
||||||
}
|
}
|
||||||
y_expected = {
|
y_expected = {
|
||||||
"type-a": [[False, True], [False, True], [True, False]],
|
"type-a": [[False, True], [False, True], [True, False]],
|
||||||
"type-b": [[False, True]],
|
"type-b": [[False, True]],
|
||||||
}
|
}
|
||||||
xy = StaticLazyConstraintsComponent().sample_xy_old(instance, sample)
|
xy = StaticLazyConstraintsComponent().sample_xy(sample)
|
||||||
assert xy is not None
|
assert xy is not None
|
||||||
x_actual, y_actual = xy
|
x_actual, y_actual = xy
|
||||||
assert x_actual == x_expected
|
assert x_actual == x_expected
|
||||||
|
|||||||
Reference in New Issue
Block a user