Convert MIPSolveStats into dataclass

master
Alinson S. Xavier 5 years ago
parent 2bc1e21f8e
commit bd78518c1f
No known key found for this signature in database
GPG Key ID: DCA0DAD4D2F58624

@ -220,16 +220,15 @@ class GurobiSolver(InternalSolver):
lb = self.model.objVal
ub = self.model.objBound
ws_value = self._extract_warm_start_value(log)
stats: MIPSolveStats = {
"Lower bound": lb,
"Upper bound": ub,
"Wallclock time": total_wallclock_time,
"Nodes": total_nodes,
"Sense": sense,
"MIP log": log,
"Warm start value": ws_value,
}
return stats
return MIPSolveStats(
mip_lower_bound=lb,
mip_upper_bound=ub,
mip_wallclock_time=total_wallclock_time,
mip_nodes=total_nodes,
mip_sense=sense,
mip_log=log,
mip_warm_start_value=ws_value,
)
@overrides
def get_solution(self) -> Optional[Solution]:

@ -14,7 +14,6 @@ from miplearn.instance.base import Instance
from miplearn.types import (
IterationCallback,
LazyCallback,
MIPSolveStats,
BranchPriorities,
UserCutCallback,
Solution,
@ -31,6 +30,17 @@ class LPSolveStats:
lp_wallclock_time: Optional[float] = None
@dataclass
class MIPSolveStats:
mip_lower_bound: Optional[float]
mip_log: str
mip_nodes: Optional[int]
mip_sense: str
mip_upper_bound: Optional[float]
mip_wallclock_time: float
mip_warm_start_value: Optional[float]
class InternalSolver(ABC, EnforceOverrides):
"""
Abstract class representing the MIP solver used internally by LearningSolver.

@ -240,11 +240,11 @@ class LearningSolver:
user_cut_cb=user_cut_cb,
lazy_cb=lazy_cb,
)
stats.update(cast(LearningSolveStats, mip_stats))
stats.update(cast(LearningSolveStats, mip_stats.__dict__))
stats["Solver"] = "default"
stats["Gap"] = self._compute_gap(
ub=stats["Upper bound"],
lb=stats["Lower bound"],
ub=mip_stats.mip_upper_bound,
lb=mip_stats.mip_lower_bound,
)
stats["Mode"] = self.mode
@ -256,9 +256,9 @@ class LearningSolver:
# Add some information to training_sample
# -------------------------------------------------------
training_sample.lower_bound = stats["Lower bound"]
training_sample.upper_bound = stats["Upper bound"]
training_sample.mip_log = stats["MIP log"]
training_sample.lower_bound = mip_stats.mip_lower_bound
training_sample.upper_bound = mip_stats.mip_upper_bound
training_sample.mip_log = mip_stats.mip_log
training_sample.solution = self.internal_solver.get_solution()
# After-solve callbacks

@ -136,16 +136,15 @@ class BasePyomoSolver(InternalSolver):
self._has_mip_solution = True
lb = results["Problem"][0]["Lower bound"]
ub = results["Problem"][0]["Upper bound"]
stats: MIPSolveStats = {
"Lower bound": lb,
"Upper bound": ub,
"Wallclock time": total_wallclock_time,
"Sense": self._obj_sense,
"MIP log": log,
"Nodes": node_count,
"Warm start value": ws_value,
}
return stats
return MIPSolveStats(
mip_lower_bound=lb,
mip_upper_bound=ub,
mip_wallclock_time=total_wallclock_time,
mip_sense=self._obj_sense,
mip_log=log,
mip_nodes=node_count,
mip_warm_start_value=ws_value,
)
@overrides
def get_solution(self) -> Optional[Solution]:

@ -243,11 +243,17 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
user_cut_cb=None,
)
assert not solver.is_infeasible()
assert len(mip_stats["MIP log"]) > 100
assert_equals(mip_stats["Lower bound"], 1183.0)
assert_equals(mip_stats["Upper bound"], 1183.0)
assert_equals(mip_stats["Sense"], "max")
assert isinstance(mip_stats["Wallclock time"], float)
assert mip_stats.mip_log is not None
assert len(mip_stats.mip_log) > 100
assert mip_stats.mip_lower_bound is not None
assert_equals(mip_stats.mip_lower_bound, 1183.0)
assert mip_stats.mip_upper_bound is not None
assert_equals(mip_stats.mip_upper_bound, 1183.0)
assert mip_stats.mip_sense is not None
assert_equals(mip_stats.mip_sense, "max")
assert mip_stats.mip_wallclock_time is not None
assert isinstance(mip_stats.mip_wallclock_time, float)
assert mip_stats.mip_wallclock_time > 0
# Fetch variables (after-load)
assert_equals(
@ -325,7 +331,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
# Re-solve MIP and verify that constraint affects the solution
stats = solver.solve()
assert_equals(stats["Lower bound"], 1030.0)
assert_equals(stats.mip_lower_bound, 1030.0)
assert solver.is_constraint_satisfied(cut)
# Remove the new constraint
@ -333,7 +339,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
# New constraint should no longer affect solution
stats = solver.solve()
assert_equals(stats["Lower bound"], 1183.0)
assert_equals(stats.mip_lower_bound, 1183.0)
def run_warm_start_tests(solver: InternalSolver) -> None:
@ -342,17 +348,17 @@ def run_warm_start_tests(solver: InternalSolver) -> None:
solver.set_instance(instance, model)
solver.set_warm_start({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
stats = solver.solve(tee=True)
if stats["Warm start value"] is not None:
assert_equals(stats["Warm start value"], 725.0)
if stats.mip_warm_start_value is not None:
assert_equals(stats.mip_warm_start_value, 725.0)
solver.set_warm_start({"x[0]": 1.0, "x[1]": 1.0, "x[2]": 1.0, "x[3]": 1.0})
stats = solver.solve(tee=True)
assert stats["Warm start value"] is None
assert stats.mip_warm_start_value is None
solver.fix({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
stats = solver.solve(tee=True)
assert_equals(stats["Lower bound"], 725.0)
assert_equals(stats["Upper bound"], 725.0)
assert_equals(stats.mip_lower_bound, 725.0)
assert_equals(stats.mip_upper_bound, 725.0)
def run_infeasibility_tests(solver: InternalSolver) -> None:
@ -361,8 +367,8 @@ def run_infeasibility_tests(solver: InternalSolver) -> None:
mip_stats = solver.solve()
assert solver.is_infeasible()
assert solver.get_solution() is None
assert mip_stats["Upper bound"] is None
assert mip_stats["Lower bound"] is None
assert mip_stats.mip_upper_bound is None
assert mip_stats.mip_lower_bound is None
lp_stats = solver.solve_lp()
assert solver.get_solution() is None
assert lp_stats.lp_value is None

@ -19,30 +19,18 @@ UserCutCallback = Callable[["InternalSolver", Any], None]
VariableName = str
Solution = Dict[VariableName, Optional[float]]
MIPSolveStats = TypedDict(
"MIPSolveStats",
{
"Lower bound": Optional[float],
"MIP log": str,
"Nodes": Optional[int],
"Sense": str,
"Upper bound": Optional[float],
"Wallclock time": float,
"Warm start value": Optional[float],
},
)
LearningSolveStats = TypedDict(
"LearningSolveStats",
{
"Gap": Optional[float],
"Instance": Union[str, int],
"LP log": str,
"LP value": Optional[float],
"Lower bound": Optional[float],
"MIP log": str,
"lp_log": str,
"lp_value": Optional[float],
"lp_wallclock_time": Optional[float],
"mip_lower_bound": Optional[float],
"mip_log": str,
"Mode": str,
"Nodes": Optional[int],
"mip_nodes": Optional[int],
"Objective: Predicted lower bound": float,
"Objective: Predicted upper bound": float,
"Primal: Free": int,
@ -50,9 +38,9 @@ LearningSolveStats = TypedDict(
"Primal: Zero": int,
"Sense": str,
"Solver": str,
"Upper bound": Optional[float],
"Wallclock time": float,
"Warm start value": Optional[float],
"mip_upper_bound": Optional[float],
"mip_wallclock_time": float,
"mip_warm_start_value": Optional[float],
"LazyStatic: Removed": int,
"LazyStatic: Kept": int,
"LazyStatic: Restored": int,

@ -255,5 +255,5 @@ def test_usage() -> None:
solver.solve(instance)
solver.fit([instance])
stats = solver.solve(instance)
assert stats["Lower bound"] == stats["Objective: Predicted lower bound"]
assert stats["Upper bound"] == stats["Objective: Predicted upper bound"]
assert stats["mip_lower_bound"] == stats["Objective: Predicted lower bound"]
assert stats["mip_upper_bound"] == stats["Objective: Predicted upper bound"]

@ -221,7 +221,7 @@ def test_usage() -> None:
stats = solver.solve(instance)
assert stats["Primal: Free"] == 0
assert stats["Primal: One"] + stats["Primal: Zero"] == 10
assert stats["Lower bound"] == stats["Warm start value"]
assert stats["mip_lower_bound"] == stats["mip_warm_start_value"]
def test_evaluate() -> None:

@ -16,7 +16,7 @@ def test_stab() -> None:
instance = MaxWeightStableSetInstance(graph, weights)
solver = LearningSolver()
stats = solver.solve(instance)
assert stats["Lower bound"] == 2.0
assert stats["mip_lower_bound"] == 2.0
def test_stab_generator_fixed_graph() -> None:

@ -47,8 +47,8 @@ def test_instance() -> None:
assert solution["x[(1, 2)]"] == 1.0
assert solution["x[(1, 3)]"] == 0.0
assert solution["x[(2, 3)]"] == 1.0
assert stats["Lower bound"] == 4.0
assert stats["Upper bound"] == 4.0
assert stats["mip_lower_bound"] == 4.0
assert stats["mip_upper_bound"] == 4.0
def test_subtour() -> None:

@ -140,7 +140,7 @@ def test_simulate_perfect() -> None:
simulate_perfect=True,
)
stats = solver.solve(PickleGzInstance(tmp.name))
assert stats["Lower bound"] == stats["Objective: Predicted lower bound"]
assert stats["mip_lower_bound"] == stats["Objective: Predicted lower bound"]
def test_gap() -> None:

Loading…
Cancel
Save