mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-08 10:28:52 -06:00
Remove obsolete benchmark files
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import List, Dict
|
||||
|
||||
import networkx as nx
|
||||
@@ -14,28 +15,6 @@ from scipy.stats.distributions import rv_frozen
|
||||
from miplearn.instance.base import Instance
|
||||
|
||||
|
||||
class ChallengeA:
|
||||
def __init__(
|
||||
self,
|
||||
seed: int = 42,
|
||||
n_training_instances: int = 500,
|
||||
n_test_instances: int = 50,
|
||||
) -> None:
|
||||
np.random.seed(seed)
|
||||
self.generator = MaxWeightStableSetGenerator(
|
||||
w=uniform(loc=100.0, scale=50.0),
|
||||
n=randint(low=200, high=201),
|
||||
p=uniform(loc=0.05, scale=0.0),
|
||||
fix_graph=True,
|
||||
)
|
||||
|
||||
np.random.seed(seed + 1)
|
||||
self.training_instances = self.generator.generate(n_training_instances)
|
||||
|
||||
np.random.seed(seed + 2)
|
||||
self.test_instances = self.generator.generate(n_test_instances)
|
||||
|
||||
|
||||
class MaxWeightStableSetInstance(Instance):
|
||||
"""An instance of the Maximum-Weight Stable Set Problem.
|
||||
|
||||
@@ -65,30 +44,6 @@ class MaxWeightStableSetInstance(Instance):
|
||||
model.clique_eqs.add(sum(model.x[v] for v in clique) <= 1)
|
||||
return model
|
||||
|
||||
@overrides
|
||||
def get_variable_features(self, names: np.ndarray) -> np.ndarray:
|
||||
features = []
|
||||
assert len(names) == len(self.nodes)
|
||||
for i, v1 in enumerate(self.nodes):
|
||||
assert names[i] == f"x[{v1}]".encode()
|
||||
neighbor_weights = [0.0] * 15
|
||||
neighbor_degrees = [100.0] * 15
|
||||
for v2 in self.graph.neighbors(v1):
|
||||
neighbor_weights += [self.weights[v2] / self.weights[v1]]
|
||||
neighbor_degrees += [self.graph.degree(v2) / self.graph.degree(v1)]
|
||||
neighbor_weights.sort(reverse=True)
|
||||
neighbor_degrees.sort()
|
||||
f = []
|
||||
f += neighbor_weights[:5]
|
||||
f += neighbor_degrees[:5]
|
||||
f += [self.graph.degree(v1)]
|
||||
features.append(f)
|
||||
return np.array(features)
|
||||
|
||||
@overrides
|
||||
def get_variable_categories(self, names: np.ndarray) -> np.ndarray:
|
||||
return np.array(["default" for _ in names], dtype="S")
|
||||
|
||||
|
||||
class MaxWeightStableSetGenerator:
|
||||
"""Random instance generator for the Maximum-Weight Stable Set Problem.
|
||||
|
||||
Reference in New Issue
Block a user