mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Remove obsolete benchmark files
This commit is contained in:
1
Makefile
1
Makefile
@@ -44,7 +44,6 @@ test:
|
|||||||
rm -rf .mypy_cache
|
rm -rf .mypy_cache
|
||||||
$(MYPY) -p miplearn
|
$(MYPY) -p miplearn
|
||||||
$(MYPY) -p tests
|
$(MYPY) -p tests
|
||||||
$(MYPY) -p benchmark
|
|
||||||
$(PYTEST) $(PYTEST_ARGS)
|
$(PYTEST) $(PYTEST_ARGS)
|
||||||
|
|
||||||
.PHONY: test test-watch docs install dist
|
.PHONY: test test-watch docs install dist
|
||||||
|
|||||||
@@ -1,31 +0,0 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
|
||||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
|
||||||
|
|
||||||
CHALLENGES := \
|
|
||||||
stab/ChallengeA \
|
|
||||||
knapsack/ChallengeA \
|
|
||||||
tsp/ChallengeA
|
|
||||||
|
|
||||||
test: $(addsuffix /performance.png, $(CHALLENGES))
|
|
||||||
|
|
||||||
train: $(addsuffix /train/done, $(CHALLENGES))
|
|
||||||
|
|
||||||
%/train/done:
|
|
||||||
python benchmark.py train $*
|
|
||||||
|
|
||||||
%/benchmark_baseline.csv: %/train/done
|
|
||||||
python benchmark.py test-baseline $*
|
|
||||||
|
|
||||||
%/benchmark_ml.csv: %/benchmark_baseline.csv
|
|
||||||
python benchmark.py test-ml $*
|
|
||||||
|
|
||||||
%/performance.png: %/benchmark_ml.csv
|
|
||||||
python benchmark.py charts $*
|
|
||||||
|
|
||||||
clean:
|
|
||||||
rm -rvf $(CHALLENGES)
|
|
||||||
|
|
||||||
.PHONY: clean
|
|
||||||
.SECONDARY:
|
|
||||||
@@ -1,268 +0,0 @@
|
|||||||
#!/usr/bin/env python
|
|
||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
||||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
|
||||||
|
|
||||||
"""MIPLearn Benchmark Scripts
|
|
||||||
|
|
||||||
Usage:
|
|
||||||
benchmark.py train [options] <challenge>
|
|
||||||
benchmark.py test-baseline [options] <challenge>
|
|
||||||
benchmark.py test-ml [options] <challenge>
|
|
||||||
benchmark.py charts <challenge>
|
|
||||||
|
|
||||||
Options:
|
|
||||||
-h --help Show this screen
|
|
||||||
--train-jobs=<n> Number of instances to solve in parallel during training [default: 10]
|
|
||||||
--train-time-limit=<n> Solver time limit during training in seconds [default: 900]
|
|
||||||
--test-jobs=<n> Number of instances to solve in parallel during test [default: 5]
|
|
||||||
--test-time-limit=<n> Solver time limit during test in seconds [default: 900]
|
|
||||||
--solver-threads=<n> Number of threads the solver is allowed to use [default: 4]
|
|
||||||
"""
|
|
||||||
import glob
|
|
||||||
import importlib
|
|
||||||
import logging
|
|
||||||
import os
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict, List
|
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import pandas as pd
|
|
||||||
import seaborn as sns
|
|
||||||
from docopt import docopt
|
|
||||||
from numpy import median
|
|
||||||
|
|
||||||
from miplearn import (
|
|
||||||
LearningSolver,
|
|
||||||
BenchmarkRunner,
|
|
||||||
GurobiPyomoSolver,
|
|
||||||
setup_logger,
|
|
||||||
PickleGzInstance,
|
|
||||||
write_pickle_gz_multiple,
|
|
||||||
Instance,
|
|
||||||
)
|
|
||||||
|
|
||||||
setup_logger()
|
|
||||||
logging.getLogger("gurobipy").setLevel(logging.ERROR)
|
|
||||||
logging.getLogger("pyomo.core").setLevel(logging.ERROR)
|
|
||||||
logger = logging.getLogger("benchmark")
|
|
||||||
|
|
||||||
|
|
||||||
def train(args: Dict) -> None:
|
|
||||||
basepath = args["<challenge>"]
|
|
||||||
problem_name, challenge_name = args["<challenge>"].split("/")
|
|
||||||
pkg = importlib.import_module(f"miplearn.problems.{problem_name}")
|
|
||||||
challenge = getattr(pkg, challenge_name)()
|
|
||||||
|
|
||||||
if not os.path.isdir(f"{basepath}/train"):
|
|
||||||
write_pickle_gz_multiple(challenge.training_instances, f"{basepath}/train")
|
|
||||||
write_pickle_gz_multiple(challenge.test_instances, f"{basepath}/test")
|
|
||||||
|
|
||||||
done_filename = f"{basepath}/train/done"
|
|
||||||
if not os.path.isfile(done_filename):
|
|
||||||
train_instances: List[Instance] = [
|
|
||||||
PickleGzInstance(f) for f in glob.glob(f"{basepath}/train/*.gz")
|
|
||||||
]
|
|
||||||
solver = LearningSolver(
|
|
||||||
solver=GurobiPyomoSolver(
|
|
||||||
params={
|
|
||||||
"TimeLimit": int(args["--train-time-limit"]),
|
|
||||||
"Threads": int(args["--solver-threads"]),
|
|
||||||
}
|
|
||||||
),
|
|
||||||
)
|
|
||||||
solver.parallel_solve(
|
|
||||||
train_instances,
|
|
||||||
n_jobs=int(args["--train-jobs"]),
|
|
||||||
)
|
|
||||||
Path(done_filename).touch(exist_ok=True)
|
|
||||||
|
|
||||||
|
|
||||||
def test_baseline(args: Dict) -> None:
|
|
||||||
basepath = args["<challenge>"]
|
|
||||||
test_instances: List[Instance] = [
|
|
||||||
PickleGzInstance(f) for f in glob.glob(f"{basepath}/test/*.gz")
|
|
||||||
]
|
|
||||||
csv_filename = f"{basepath}/benchmark_baseline.csv"
|
|
||||||
if not os.path.isfile(csv_filename):
|
|
||||||
solvers = {
|
|
||||||
"baseline": LearningSolver(
|
|
||||||
solver=GurobiPyomoSolver(
|
|
||||||
params={
|
|
||||||
"TimeLimit": int(args["--test-time-limit"]),
|
|
||||||
"Threads": int(args["--solver-threads"]),
|
|
||||||
}
|
|
||||||
),
|
|
||||||
),
|
|
||||||
}
|
|
||||||
benchmark = BenchmarkRunner(solvers)
|
|
||||||
benchmark.parallel_solve(
|
|
||||||
test_instances,
|
|
||||||
n_jobs=int(args["--test-jobs"]),
|
|
||||||
)
|
|
||||||
benchmark.write_csv(csv_filename)
|
|
||||||
|
|
||||||
|
|
||||||
def test_ml(args: Dict) -> None:
|
|
||||||
basepath = args["<challenge>"]
|
|
||||||
test_instances: List[Instance] = [
|
|
||||||
PickleGzInstance(f) for f in glob.glob(f"{basepath}/test/*.gz")
|
|
||||||
]
|
|
||||||
train_instances: List[Instance] = [
|
|
||||||
PickleGzInstance(f) for f in glob.glob(f"{basepath}/train/*.gz")
|
|
||||||
]
|
|
||||||
csv_filename = f"{basepath}/benchmark_ml.csv"
|
|
||||||
if not os.path.isfile(csv_filename):
|
|
||||||
solvers = {
|
|
||||||
"ml-exact": LearningSolver(
|
|
||||||
solver=GurobiPyomoSolver(
|
|
||||||
params={
|
|
||||||
"TimeLimit": int(args["--test-time-limit"]),
|
|
||||||
"Threads": int(args["--solver-threads"]),
|
|
||||||
}
|
|
||||||
),
|
|
||||||
),
|
|
||||||
"ml-heuristic": LearningSolver(
|
|
||||||
solver=GurobiPyomoSolver(
|
|
||||||
params={
|
|
||||||
"TimeLimit": int(args["--test-time-limit"]),
|
|
||||||
"Threads": int(args["--solver-threads"]),
|
|
||||||
}
|
|
||||||
),
|
|
||||||
mode="heuristic",
|
|
||||||
),
|
|
||||||
}
|
|
||||||
benchmark = BenchmarkRunner(solvers)
|
|
||||||
benchmark.fit(train_instances)
|
|
||||||
benchmark.parallel_solve(
|
|
||||||
test_instances,
|
|
||||||
n_jobs=int(args["--test-jobs"]),
|
|
||||||
)
|
|
||||||
benchmark.write_csv(csv_filename)
|
|
||||||
|
|
||||||
|
|
||||||
def charts(args: Dict) -> None:
|
|
||||||
basepath = args["<challenge>"]
|
|
||||||
sns.set_style("whitegrid")
|
|
||||||
sns.set_palette("Blues_r")
|
|
||||||
|
|
||||||
csv_files = [
|
|
||||||
f"{basepath}/benchmark_baseline.csv",
|
|
||||||
f"{basepath}/benchmark_ml.csv",
|
|
||||||
]
|
|
||||||
results = pd.concat(map(pd.read_csv, csv_files))
|
|
||||||
groups = results.groupby("Instance")
|
|
||||||
best_lower_bound = groups["Lower bound"].transform("max")
|
|
||||||
best_upper_bound = groups["Upper bound"].transform("min")
|
|
||||||
results["Relative lower bound"] = results["Lower bound"] / best_lower_bound
|
|
||||||
results["Relative upper bound"] = results["Upper bound"] / best_upper_bound
|
|
||||||
|
|
||||||
sense = results.loc[0, "Sense"]
|
|
||||||
if (sense == "min").any():
|
|
||||||
primal_column = "Relative upper bound"
|
|
||||||
obj_column = "Upper bound"
|
|
||||||
predicted_obj_column = "Objective: Predicted upper bound"
|
|
||||||
else:
|
|
||||||
primal_column = "Relative lower bound"
|
|
||||||
obj_column = "Lower bound"
|
|
||||||
predicted_obj_column = "Objective: Predicted lower bound"
|
|
||||||
|
|
||||||
palette = {"baseline": "#9b59b6", "ml-exact": "#3498db", "ml-heuristic": "#95a5a6"}
|
|
||||||
fig, (ax1, ax2, ax3, ax4) = plt.subplots(
|
|
||||||
nrows=1,
|
|
||||||
ncols=4,
|
|
||||||
figsize=(12, 4),
|
|
||||||
gridspec_kw={"width_ratios": [2, 1, 1, 2]},
|
|
||||||
)
|
|
||||||
|
|
||||||
# Wallclock time
|
|
||||||
sns.stripplot(
|
|
||||||
x="Solver",
|
|
||||||
y="Wallclock time",
|
|
||||||
data=results,
|
|
||||||
ax=ax1,
|
|
||||||
jitter=0.25,
|
|
||||||
palette=palette,
|
|
||||||
size=4.0,
|
|
||||||
)
|
|
||||||
sns.barplot(
|
|
||||||
x="Solver",
|
|
||||||
y="Wallclock time",
|
|
||||||
data=results,
|
|
||||||
ax=ax1,
|
|
||||||
errwidth=0.0,
|
|
||||||
alpha=0.4,
|
|
||||||
palette=palette,
|
|
||||||
estimator=median,
|
|
||||||
)
|
|
||||||
ax1.set(ylabel="Wallclock time (s)")
|
|
||||||
|
|
||||||
# Gap
|
|
||||||
ax2.set_ylim(-0.5, 5.5)
|
|
||||||
sns.stripplot(
|
|
||||||
x="Solver",
|
|
||||||
y="Gap",
|
|
||||||
jitter=0.25,
|
|
||||||
data=results[results["Solver"] != "ml-heuristic"],
|
|
||||||
ax=ax2,
|
|
||||||
palette=palette,
|
|
||||||
size=4.0,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Relative primal bound
|
|
||||||
ax3.set_ylim(0.95, 1.05)
|
|
||||||
sns.stripplot(
|
|
||||||
x="Solver",
|
|
||||||
y=primal_column,
|
|
||||||
jitter=0.25,
|
|
||||||
data=results[results["Solver"] == "ml-heuristic"],
|
|
||||||
ax=ax3,
|
|
||||||
palette=palette,
|
|
||||||
)
|
|
||||||
sns.scatterplot(
|
|
||||||
x=obj_column,
|
|
||||||
y=predicted_obj_column,
|
|
||||||
hue="Solver",
|
|
||||||
data=results[results["Solver"] == "ml-exact"],
|
|
||||||
ax=ax4,
|
|
||||||
palette=palette,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Predicted vs actual primal bound
|
|
||||||
xlim, ylim = ax4.get_xlim(), ax4.get_ylim()
|
|
||||||
ax4.plot(
|
|
||||||
[-1e10, 1e10],
|
|
||||||
[-1e10, 1e10],
|
|
||||||
ls="-",
|
|
||||||
color="#cccccc",
|
|
||||||
)
|
|
||||||
ax4.set_xlim(xlim)
|
|
||||||
ax4.set_ylim(ylim)
|
|
||||||
ax4.get_legend().remove()
|
|
||||||
ax4.set(
|
|
||||||
ylabel="Predicted value",
|
|
||||||
xlabel="Actual value",
|
|
||||||
)
|
|
||||||
|
|
||||||
fig.tight_layout()
|
|
||||||
plt.savefig(
|
|
||||||
f"{basepath}/performance.png",
|
|
||||||
bbox_inches="tight",
|
|
||||||
dpi=150,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def main() -> None:
|
|
||||||
args = docopt(__doc__)
|
|
||||||
if args["train"]:
|
|
||||||
train(args)
|
|
||||||
if args["test-baseline"]:
|
|
||||||
test_baseline(args)
|
|
||||||
if args["test-ml"]:
|
|
||||||
test_ml(args)
|
|
||||||
if args["charts"]:
|
|
||||||
charts(args)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
@@ -13,38 +13,6 @@ from scipy.stats.distributions import rv_frozen
|
|||||||
from miplearn.instance.base import Instance
|
from miplearn.instance.base import Instance
|
||||||
|
|
||||||
|
|
||||||
class ChallengeA:
|
|
||||||
"""
|
|
||||||
- 250 variables, 10 constraints, fixed weights
|
|
||||||
- w ~ U(0, 1000), jitter ~ U(0.95, 1.05)
|
|
||||||
- K = 500, u ~ U(0., 1.)
|
|
||||||
- alpha = 0.25
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
seed: int = 42,
|
|
||||||
n_training_instances: int = 500,
|
|
||||||
n_test_instances: int = 50,
|
|
||||||
) -> None:
|
|
||||||
np.random.seed(seed)
|
|
||||||
self.gen = MultiKnapsackGenerator(
|
|
||||||
n=randint(low=250, high=251),
|
|
||||||
m=randint(low=10, high=11),
|
|
||||||
w=uniform(loc=0.0, scale=1000.0),
|
|
||||||
K=uniform(loc=500.0, scale=0.0),
|
|
||||||
u=uniform(loc=0.0, scale=1.0),
|
|
||||||
alpha=uniform(loc=0.25, scale=0.0),
|
|
||||||
fix_w=True,
|
|
||||||
w_jitter=uniform(loc=0.95, scale=0.1),
|
|
||||||
)
|
|
||||||
np.random.seed(seed + 1)
|
|
||||||
self.training_instances = self.gen.generate(n_training_instances)
|
|
||||||
|
|
||||||
np.random.seed(seed + 2)
|
|
||||||
self.test_instances = self.gen.generate(n_test_instances)
|
|
||||||
|
|
||||||
|
|
||||||
class MultiKnapsackInstance(Instance):
|
class MultiKnapsackInstance(Instance):
|
||||||
"""Representation of the Multidimensional 0-1 Knapsack Problem.
|
"""Representation of the Multidimensional 0-1 Knapsack Problem.
|
||||||
|
|
||||||
@@ -93,19 +61,6 @@ class MultiKnapsackInstance(Instance):
|
|||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
@overrides
|
|
||||||
def get_instance_features(self) -> np.ndarray:
|
|
||||||
return np.array([float(np.mean(self.prices))] + list(self.capacities))
|
|
||||||
|
|
||||||
@overrides
|
|
||||||
def get_variable_features(self, names: np.ndarray) -> np.ndarray:
|
|
||||||
features = []
|
|
||||||
for i in range(len(self.weights)):
|
|
||||||
f = [self.prices[i]]
|
|
||||||
f.extend(self.weights[:, i])
|
|
||||||
features.append(f)
|
|
||||||
return np.array(features)
|
|
||||||
|
|
||||||
|
|
||||||
# noinspection PyPep8Naming
|
# noinspection PyPep8Naming
|
||||||
class MultiKnapsackGenerator:
|
class MultiKnapsackGenerator:
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
from typing import List, Dict
|
from typing import List, Dict
|
||||||
|
|
||||||
import networkx as nx
|
import networkx as nx
|
||||||
@@ -14,28 +15,6 @@ from scipy.stats.distributions import rv_frozen
|
|||||||
from miplearn.instance.base import Instance
|
from miplearn.instance.base import Instance
|
||||||
|
|
||||||
|
|
||||||
class ChallengeA:
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
seed: int = 42,
|
|
||||||
n_training_instances: int = 500,
|
|
||||||
n_test_instances: int = 50,
|
|
||||||
) -> None:
|
|
||||||
np.random.seed(seed)
|
|
||||||
self.generator = MaxWeightStableSetGenerator(
|
|
||||||
w=uniform(loc=100.0, scale=50.0),
|
|
||||||
n=randint(low=200, high=201),
|
|
||||||
p=uniform(loc=0.05, scale=0.0),
|
|
||||||
fix_graph=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
np.random.seed(seed + 1)
|
|
||||||
self.training_instances = self.generator.generate(n_training_instances)
|
|
||||||
|
|
||||||
np.random.seed(seed + 2)
|
|
||||||
self.test_instances = self.generator.generate(n_test_instances)
|
|
||||||
|
|
||||||
|
|
||||||
class MaxWeightStableSetInstance(Instance):
|
class MaxWeightStableSetInstance(Instance):
|
||||||
"""An instance of the Maximum-Weight Stable Set Problem.
|
"""An instance of the Maximum-Weight Stable Set Problem.
|
||||||
|
|
||||||
@@ -65,30 +44,6 @@ class MaxWeightStableSetInstance(Instance):
|
|||||||
model.clique_eqs.add(sum(model.x[v] for v in clique) <= 1)
|
model.clique_eqs.add(sum(model.x[v] for v in clique) <= 1)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
@overrides
|
|
||||||
def get_variable_features(self, names: np.ndarray) -> np.ndarray:
|
|
||||||
features = []
|
|
||||||
assert len(names) == len(self.nodes)
|
|
||||||
for i, v1 in enumerate(self.nodes):
|
|
||||||
assert names[i] == f"x[{v1}]".encode()
|
|
||||||
neighbor_weights = [0.0] * 15
|
|
||||||
neighbor_degrees = [100.0] * 15
|
|
||||||
for v2 in self.graph.neighbors(v1):
|
|
||||||
neighbor_weights += [self.weights[v2] / self.weights[v1]]
|
|
||||||
neighbor_degrees += [self.graph.degree(v2) / self.graph.degree(v1)]
|
|
||||||
neighbor_weights.sort(reverse=True)
|
|
||||||
neighbor_degrees.sort()
|
|
||||||
f = []
|
|
||||||
f += neighbor_weights[:5]
|
|
||||||
f += neighbor_degrees[:5]
|
|
||||||
f += [self.graph.degree(v1)]
|
|
||||||
features.append(f)
|
|
||||||
return np.array(features)
|
|
||||||
|
|
||||||
@overrides
|
|
||||||
def get_variable_categories(self, names: np.ndarray) -> np.ndarray:
|
|
||||||
return np.array(["default" for _ in names], dtype="S")
|
|
||||||
|
|
||||||
|
|
||||||
class MaxWeightStableSetGenerator:
|
class MaxWeightStableSetGenerator:
|
||||||
"""Random instance generator for the Maximum-Weight Stable Set Problem.
|
"""Random instance generator for the Maximum-Weight Stable Set Problem.
|
||||||
|
|||||||
@@ -17,30 +17,6 @@ from miplearn.solvers.pyomo.base import BasePyomoSolver
|
|||||||
from miplearn.types import ConstraintName
|
from miplearn.types import ConstraintName
|
||||||
|
|
||||||
|
|
||||||
class ChallengeA:
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
seed: int = 42,
|
|
||||||
n_training_instances: int = 500,
|
|
||||||
n_test_instances: int = 50,
|
|
||||||
) -> None:
|
|
||||||
np.random.seed(seed)
|
|
||||||
self.generator = TravelingSalesmanGenerator(
|
|
||||||
x=uniform(loc=0.0, scale=1000.0),
|
|
||||||
y=uniform(loc=0.0, scale=1000.0),
|
|
||||||
n=randint(low=350, high=351),
|
|
||||||
gamma=uniform(loc=0.95, scale=0.1),
|
|
||||||
fix_cities=True,
|
|
||||||
round=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
np.random.seed(seed + 1)
|
|
||||||
self.training_instances = self.generator.generate(n_training_instances)
|
|
||||||
|
|
||||||
np.random.seed(seed + 2)
|
|
||||||
self.test_instances = self.generator.generate(n_test_instances)
|
|
||||||
|
|
||||||
|
|
||||||
class TravelingSalesmanInstance(Instance):
|
class TravelingSalesmanInstance(Instance):
|
||||||
"""An instance ot the Traveling Salesman Problem.
|
"""An instance ot the Traveling Salesman Problem.
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user