mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Adjust knapsack challenge; introduce round option
This commit is contained in:
@@ -11,19 +11,32 @@ from scipy.stats.distributions import rv_frozen
|
||||
|
||||
|
||||
class ChallengeA:
|
||||
def __init__(self, seed=0):
|
||||
"""
|
||||
- 250 variables, 10 constraints, fixed weights
|
||||
- w ~ U(100, 900), jitter ~ U(-100, 100)
|
||||
- K = 500, u ~ U(0., 1.)
|
||||
- alpha = 0.25
|
||||
"""
|
||||
def __init__(self,
|
||||
seed=42,
|
||||
n_training_instances=300,
|
||||
n_test_instances=50):
|
||||
|
||||
np.random.seed(seed)
|
||||
self.gen = MultiKnapsackGenerator(n=randint(low=50, high=51),
|
||||
m=randint(low=3, high=4),
|
||||
w=uniform(loc=0.0, scale=200.0),
|
||||
K=uniform(loc=1.0, scale=0.0),
|
||||
u=uniform(loc=1.0, scale=0.0),
|
||||
self.gen = MultiKnapsackGenerator(n=randint(low=250, high=251),
|
||||
m=randint(low=10, high=11),
|
||||
w=uniform(loc=100.0, scale=900.0),
|
||||
K=uniform(loc=500.0, scale=0.0),
|
||||
u=uniform(loc=0.0, scale=1.0),
|
||||
alpha=uniform(loc=0.25, scale=0.0),
|
||||
fix_w=True,
|
||||
w_jitter=uniform(loc=-10.0, scale=20.0),
|
||||
w_jitter=uniform(loc=-100.0, scale=200.0),
|
||||
)
|
||||
self.training_instances = self.gen.generate(300)
|
||||
self.test_instances = self.gen.generate(50)
|
||||
np.random.seed(seed + 1)
|
||||
self.training_instances = self.gen.generate(n_training_instances)
|
||||
|
||||
np.random.seed(seed + 2)
|
||||
self.test_instances = self.gen.generate(n_test_instances)
|
||||
|
||||
|
||||
class MultiKnapsackInstance(Instance):
|
||||
@@ -90,7 +103,7 @@ class MultiKnapsackGenerator:
|
||||
alpha=uniform(loc=0.25, scale=0.0),
|
||||
fix_w=False,
|
||||
w_jitter=randint(low=0, high=1),
|
||||
seed=None,
|
||||
round=True,
|
||||
):
|
||||
"""Initialize the problem generator.
|
||||
|
||||
@@ -143,6 +156,8 @@ class MultiKnapsackGenerator:
|
||||
If true, weights are kept the same (minus the noise from w_jitter) in all instances
|
||||
w_jitter: rv_continuous
|
||||
Probability distribution for random noise added to the weights
|
||||
round: boolean
|
||||
If true, all prices, weights and capacities are rounded to the nearest integer
|
||||
"""
|
||||
assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution"
|
||||
assert isinstance(m, rv_frozen), "m should be a SciPy probability distribution"
|
||||
@@ -161,6 +176,7 @@ class MultiKnapsackGenerator:
|
||||
self.u = u
|
||||
self.alpha = alpha
|
||||
self.w_jitter = w_jitter
|
||||
self.round = round
|
||||
|
||||
if fix_w:
|
||||
self.fix_n = self.n.rvs()
|
||||
@@ -187,6 +203,10 @@ class MultiKnapsackGenerator:
|
||||
alpha = self.alpha.rvs(m)
|
||||
p = np.array([w[:,j].sum() / m + K * u[j] for j in range(n)])
|
||||
b = np.array([w[i,:].sum() * alpha[i] for i in range(m)])
|
||||
if self.round:
|
||||
p = p.round()
|
||||
b = b.round()
|
||||
w = w.round()
|
||||
return MultiKnapsackInstance(p, b, w)
|
||||
return [_sample() for _ in range(n_samples)]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user