Increase training time limit

pull/3/head
Alinson S. Xavier 6 years ago
parent 99badb5169
commit c428d70414
No known key found for this signature in database
GPG Key ID: A796166E4E218E02

@ -27,12 +27,14 @@ logging.basicConfig(format='%(asctime)s %(levelname).1s %(name)s: %(message)12s'
datefmt='%H:%M:%S', datefmt='%H:%M:%S',
level=logging.INFO, level=logging.INFO,
stream=sys.stdout) stream=sys.stdout)
logging.getLogger('gurobipy').setLevel(logging.ERROR)
logging.getLogger('pyomo.core').setLevel(logging.ERROR) logging.getLogger('pyomo.core').setLevel(logging.ERROR)
logging.getLogger('miplearn').setLevel(logging.INFO) logging.getLogger('miplearn').setLevel(logging.INFO)
logger = logging.getLogger("benchmark") logger = logging.getLogger("benchmark")
n_jobs = 10 n_jobs = 10
time_limit = 900 test_time_limit = 3600
train_time_limit = 900
internal_solver = "gurobi" internal_solver = "gurobi"
args = docopt(__doc__) args = docopt(__doc__)
@ -58,7 +60,7 @@ def train():
challenge = getattr(pkg, challenge_name)() challenge = getattr(pkg, challenge_name)()
train_instances = challenge.training_instances train_instances = challenge.training_instances
test_instances = challenge.test_instances test_instances = challenge.test_instances
solver = LearningSolver(time_limit=time_limit, solver = LearningSolver(time_limit=train_time_limit,
solver=internal_solver, solver=internal_solver,
components={}) components={})
solver.parallel_solve(train_instances, n_jobs=n_jobs) solver.parallel_solve(train_instances, n_jobs=n_jobs)
@ -70,7 +72,7 @@ def test_baseline():
test_instances = load("%s/test_instances.bin" % basepath) test_instances = load("%s/test_instances.bin" % basepath)
solvers = { solvers = {
"baseline": LearningSolver( "baseline": LearningSolver(
time_limit=time_limit, time_limit=test_time_limit,
solver=internal_solver, solver=internal_solver,
), ),
} }
@ -85,11 +87,11 @@ def test_ml():
test_instances = load("%s/test_instances.bin" % basepath) test_instances = load("%s/test_instances.bin" % basepath)
solvers = { solvers = {
"ml-exact": LearningSolver( "ml-exact": LearningSolver(
time_limit=time_limit, time_limit=test_time_limit,
solver=internal_solver, solver=internal_solver,
), ),
"ml-heuristic": LearningSolver( "ml-heuristic": LearningSolver(
time_limit=time_limit, time_limit=test_time_limit,
solver=internal_solver, solver=internal_solver,
mode="heuristic", mode="heuristic",
), ),

Loading…
Cancel
Save