mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-07 18:08:51 -06:00
Remove obsolete methods
This commit is contained in:
@@ -12,7 +12,7 @@ from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.threshold import Threshold
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.features import TrainingSample, Sample
|
||||
from miplearn.features import Sample
|
||||
from miplearn.instance.base import Instance
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -37,44 +37,6 @@ class DynamicConstraintsComponent(Component):
|
||||
self.known_cids: List[str] = []
|
||||
self.attr = attr
|
||||
|
||||
def sample_xy_with_cids_old(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[
|
||||
Dict[Hashable, List[List[float]]],
|
||||
Dict[Hashable, List[List[bool]]],
|
||||
Dict[Hashable, List[str]],
|
||||
]:
|
||||
x: Dict[Hashable, List[List[float]]] = {}
|
||||
y: Dict[Hashable, List[List[bool]]] = {}
|
||||
cids: Dict[Hashable, List[str]] = {}
|
||||
for cid in self.known_cids:
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
y[category] = []
|
||||
cids[category] = []
|
||||
assert instance.features.instance is not None
|
||||
assert instance.features.instance.user_features is not None
|
||||
cfeatures = instance.get_constraint_features(cid)
|
||||
assert cfeatures is not None
|
||||
assert isinstance(cfeatures, list)
|
||||
for ci in cfeatures:
|
||||
assert isinstance(ci, float)
|
||||
f = list(instance.features.instance.user_features)
|
||||
f += cfeatures
|
||||
x[category] += [f]
|
||||
cids[category] += [cid]
|
||||
if getattr(sample, self.attr) is not None:
|
||||
if cid in getattr(sample, self.attr):
|
||||
y[category] += [[False, True]]
|
||||
else:
|
||||
y[category] += [[True, False]]
|
||||
return x, y, cids
|
||||
|
||||
def sample_xy_with_cids(
|
||||
self,
|
||||
instance: Optional[Instance],
|
||||
@@ -122,15 +84,6 @@ class DynamicConstraintsComponent(Component):
|
||||
y[category] += [[True, False]]
|
||||
return x, y, cids
|
||||
|
||||
@overrides
|
||||
def sample_xy_old(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
x, y, _ = self.sample_xy_with_cids_old(instance, sample)
|
||||
return x, y
|
||||
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
@@ -140,29 +93,6 @@ class DynamicConstraintsComponent(Component):
|
||||
x, y, _ = self.sample_xy_with_cids(instance, sample)
|
||||
return x, y
|
||||
|
||||
def sample_predict_old(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> List[Hashable]:
|
||||
pred: List[Hashable] = []
|
||||
if len(self.known_cids) == 0:
|
||||
logger.info("Classifiers not fitted. Skipping.")
|
||||
return pred
|
||||
x, _, cids = self.sample_xy_with_cids_old(instance, sample)
|
||||
for category in x.keys():
|
||||
assert category in self.classifiers
|
||||
assert category in self.thresholds
|
||||
clf = self.classifiers[category]
|
||||
thr = self.thresholds[category]
|
||||
nx = np.array(x[category])
|
||||
proba = clf.predict_proba(nx)
|
||||
t = thr.predict(nx)
|
||||
for i in range(proba.shape[0]):
|
||||
if proba[i][1] > t[1]:
|
||||
pred += [cids[category][i]]
|
||||
return pred
|
||||
|
||||
def sample_predict(
|
||||
self,
|
||||
instance: Instance,
|
||||
@@ -186,20 +116,6 @@ class DynamicConstraintsComponent(Component):
|
||||
pred += [cids[category][i]]
|
||||
return pred
|
||||
|
||||
@overrides
|
||||
def fit_old(self, training_instances: List[Instance]) -> None:
|
||||
collected_cids = set()
|
||||
for instance in training_instances:
|
||||
instance.load()
|
||||
for sample in instance.training_data:
|
||||
if getattr(sample, self.attr) is None:
|
||||
continue
|
||||
collected_cids |= getattr(sample, self.attr)
|
||||
instance.free()
|
||||
self.known_cids.clear()
|
||||
self.known_cids.extend(sorted(collected_cids))
|
||||
super().fit_old(training_instances)
|
||||
|
||||
@overrides
|
||||
def fit(self, training_instances: List[Instance]) -> None:
|
||||
collected_cids = set()
|
||||
|
||||
Reference in New Issue
Block a user