Remove obsolete methods

This commit is contained in:
2021-04-13 09:42:25 -05:00
parent c26b852c67
commit c4a6665825
22 changed files with 93 additions and 499 deletions

View File

@@ -12,7 +12,7 @@ from miplearn.classifiers import Classifier
from miplearn.classifiers.threshold import Threshold
from miplearn.components import classifier_evaluation_dict
from miplearn.components.component import Component
from miplearn.features import TrainingSample, Sample
from miplearn.features import Sample
from miplearn.instance.base import Instance
logger = logging.getLogger(__name__)
@@ -37,44 +37,6 @@ class DynamicConstraintsComponent(Component):
self.known_cids: List[str] = []
self.attr = attr
def sample_xy_with_cids_old(
self,
instance: Instance,
sample: TrainingSample,
) -> Tuple[
Dict[Hashable, List[List[float]]],
Dict[Hashable, List[List[bool]]],
Dict[Hashable, List[str]],
]:
x: Dict[Hashable, List[List[float]]] = {}
y: Dict[Hashable, List[List[bool]]] = {}
cids: Dict[Hashable, List[str]] = {}
for cid in self.known_cids:
category = instance.get_constraint_category(cid)
if category is None:
continue
if category not in x:
x[category] = []
y[category] = []
cids[category] = []
assert instance.features.instance is not None
assert instance.features.instance.user_features is not None
cfeatures = instance.get_constraint_features(cid)
assert cfeatures is not None
assert isinstance(cfeatures, list)
for ci in cfeatures:
assert isinstance(ci, float)
f = list(instance.features.instance.user_features)
f += cfeatures
x[category] += [f]
cids[category] += [cid]
if getattr(sample, self.attr) is not None:
if cid in getattr(sample, self.attr):
y[category] += [[False, True]]
else:
y[category] += [[True, False]]
return x, y, cids
def sample_xy_with_cids(
self,
instance: Optional[Instance],
@@ -122,15 +84,6 @@ class DynamicConstraintsComponent(Component):
y[category] += [[True, False]]
return x, y, cids
@overrides
def sample_xy_old(
self,
instance: Instance,
sample: TrainingSample,
) -> Tuple[Dict, Dict]:
x, y, _ = self.sample_xy_with_cids_old(instance, sample)
return x, y
@overrides
def sample_xy(
self,
@@ -140,29 +93,6 @@ class DynamicConstraintsComponent(Component):
x, y, _ = self.sample_xy_with_cids(instance, sample)
return x, y
def sample_predict_old(
self,
instance: Instance,
sample: TrainingSample,
) -> List[Hashable]:
pred: List[Hashable] = []
if len(self.known_cids) == 0:
logger.info("Classifiers not fitted. Skipping.")
return pred
x, _, cids = self.sample_xy_with_cids_old(instance, sample)
for category in x.keys():
assert category in self.classifiers
assert category in self.thresholds
clf = self.classifiers[category]
thr = self.thresholds[category]
nx = np.array(x[category])
proba = clf.predict_proba(nx)
t = thr.predict(nx)
for i in range(proba.shape[0]):
if proba[i][1] > t[1]:
pred += [cids[category][i]]
return pred
def sample_predict(
self,
instance: Instance,
@@ -186,20 +116,6 @@ class DynamicConstraintsComponent(Component):
pred += [cids[category][i]]
return pred
@overrides
def fit_old(self, training_instances: List[Instance]) -> None:
collected_cids = set()
for instance in training_instances:
instance.load()
for sample in instance.training_data:
if getattr(sample, self.attr) is None:
continue
collected_cids |= getattr(sample, self.attr)
instance.free()
self.known_cids.clear()
self.known_cids.extend(sorted(collected_cids))
super().fit_old(training_instances)
@overrides
def fit(self, training_instances: List[Instance]) -> None:
collected_cids = set()