Remove obsolete methods

This commit is contained in:
2021-04-13 09:42:25 -05:00
parent c26b852c67
commit c4a6665825
22 changed files with 93 additions and 499 deletions

View File

@@ -9,8 +9,8 @@ from miplearn.features import Features
from miplearn.instance.base import Instance
def test_xy_instance_old() -> None:
def _sample_xy_old(features: Features, sample: str) -> Tuple[Dict, Dict]:
def test_xy_instance() -> None:
def _sample_xy(features: Features, sample: str) -> Tuple[Dict, Dict]:
x = {
"s1": {
"category_a": [
@@ -55,12 +55,10 @@ def test_xy_instance_old() -> None:
comp = Component()
instance_1 = Mock(spec=Instance)
instance_1.training_data = ["s1", "s2"]
instance_1.features = {}
instance_1.samples = ["s1", "s2"]
instance_2 = Mock(spec=Instance)
instance_2.training_data = ["s3"]
instance_2.features = {}
comp.sample_xy_old = _sample_xy_old # type: ignore
instance_2.samples = ["s3"]
comp.sample_xy = _sample_xy # type: ignore
x_expected = {
"category_a": [
[1, 2, 3],
@@ -96,6 +94,6 @@ def test_xy_instance_old() -> None:
[11],
],
}
x_actual, y_actual = comp.xy_instances_old([instance_1, instance_2])
x_actual, y_actual = comp.xy_instances([instance_1, instance_2])
assert x_actual == x_expected
assert y_actual == y_expected

View File

@@ -13,7 +13,6 @@ from miplearn.classifiers.threshold import MinProbabilityThreshold
from miplearn.components import classifier_evaluation_dict
from miplearn.components.dynamic_lazy import DynamicLazyConstraintsComponent
from miplearn.features import (
TrainingSample,
Features,
InstanceFeatures,
Sample,
@@ -24,60 +23,6 @@ from miplearn.solvers.tests import assert_equals
E = 0.1
@pytest.fixture
def training_instances_old() -> List[Instance]:
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
instances[0].features = Features(
instance=InstanceFeatures(
user_features=[50.0],
),
)
instances[0].training_data = [
TrainingSample(lazy_enforced={"c1", "c2"}),
TrainingSample(lazy_enforced={"c2", "c3"}),
]
instances[0].get_constraint_category = Mock( # type: ignore
side_effect=lambda cid: {
"c1": "type-a",
"c2": "type-a",
"c3": "type-b",
"c4": "type-b",
}[cid]
)
instances[0].get_constraint_features = Mock( # type: ignore
side_effect=lambda cid: {
"c1": [1.0, 2.0, 3.0],
"c2": [4.0, 5.0, 6.0],
"c3": [1.0, 2.0],
"c4": [3.0, 4.0],
}[cid]
)
instances[1].features = Features(
instance=InstanceFeatures(
user_features=[80.0],
),
)
instances[1].training_data = [
TrainingSample(lazy_enforced={"c3", "c4"}),
]
instances[1].get_constraint_category = Mock( # type: ignore
side_effect=lambda cid: {
"c1": None,
"c2": "type-a",
"c3": "type-b",
"c4": "type-b",
}[cid]
)
instances[1].get_constraint_features = Mock( # type: ignore
side_effect=lambda cid: {
"c2": [7.0, 8.0, 9.0],
"c3": [5.0, 6.0],
"c4": [7.0, 8.0],
}[cid]
)
return instances
@pytest.fixture
def training_instances() -> List[Instance]:
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]

View File

@@ -12,7 +12,7 @@ from gurobipy import GRB
from networkx import Graph
from overrides import overrides
from miplearn import InternalSolver
from miplearn.solvers.learning import InternalSolver
from miplearn.components.dynamic_user_cuts import UserCutsComponent
from miplearn.instance.base import Instance
from miplearn.solvers.gurobi import GurobiSolver