mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Remove obsolete methods
This commit is contained in:
@@ -13,12 +13,6 @@ from .components.dynamic_user_cuts import UserCutsComponent
|
||||
from .components.objective import ObjectiveValueComponent
|
||||
from .components.primal import PrimalSolutionComponent
|
||||
from .components.static_lazy import StaticLazyConstraintsComponent
|
||||
from .features import (
|
||||
Features,
|
||||
TrainingSample,
|
||||
Variable,
|
||||
InstanceFeatures,
|
||||
)
|
||||
from .instance.base import Instance
|
||||
from .instance.picklegz import (
|
||||
PickleGzInstance,
|
||||
|
||||
@@ -7,7 +7,7 @@ from typing import Any, List, TYPE_CHECKING, Tuple, Dict, Hashable, Optional
|
||||
import numpy as np
|
||||
from overrides import EnforceOverrides
|
||||
|
||||
from miplearn.features import TrainingSample, Features, Sample
|
||||
from miplearn.features import Sample
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.types import LearningSolveStats
|
||||
|
||||
@@ -39,21 +39,6 @@ class Component(EnforceOverrides):
|
||||
"""
|
||||
return
|
||||
|
||||
def after_solve_lp_old(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
instance: Instance,
|
||||
model: Any,
|
||||
stats: LearningSolveStats,
|
||||
features: Features,
|
||||
training_data: TrainingSample,
|
||||
) -> None:
|
||||
"""
|
||||
Method called by LearningSolver after the root LP relaxation is solved.
|
||||
See before_solve_lp for a description of the parameters.
|
||||
"""
|
||||
return
|
||||
|
||||
def after_solve_mip(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
@@ -68,21 +53,6 @@ class Component(EnforceOverrides):
|
||||
"""
|
||||
return
|
||||
|
||||
def after_solve_mip_old(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
instance: Instance,
|
||||
model: Any,
|
||||
stats: LearningSolveStats,
|
||||
features: Features,
|
||||
training_data: TrainingSample,
|
||||
) -> None:
|
||||
"""
|
||||
Method called by LearningSolver after the MIP is solved.
|
||||
See before_solve_lp for a description of the parameters.
|
||||
"""
|
||||
return
|
||||
|
||||
def before_solve_lp(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
@@ -115,43 +85,6 @@ class Component(EnforceOverrides):
|
||||
"""
|
||||
return
|
||||
|
||||
def before_solve_lp_old(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
instance: Instance,
|
||||
model: Any,
|
||||
stats: LearningSolveStats,
|
||||
features: Features,
|
||||
training_data: TrainingSample,
|
||||
) -> None:
|
||||
"""
|
||||
Method called by LearningSolver before the root LP relaxation is solved.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
solver: LearningSolver
|
||||
The solver calling this method.
|
||||
instance: Instance
|
||||
The instance being solved.
|
||||
model
|
||||
The concrete optimization model being solved.
|
||||
stats: LearningSolveStats
|
||||
A dictionary containing statistics about the solution process, such as
|
||||
number of nodes explored and running time. Components are free to add
|
||||
their own statistics here. For example, PrimalSolutionComponent adds
|
||||
statistics regarding the number of predicted variables. All statistics in
|
||||
this dictionary are exported to the benchmark CSV file.
|
||||
features: miplearn.features.Features
|
||||
Features describing the model.
|
||||
training_data: TrainingSample
|
||||
A dictionary containing data that may be useful for training machine
|
||||
learning models and accelerating the solution process. Components are
|
||||
free to add their own training data here. For example,
|
||||
PrimalSolutionComponent adds the current primal solution. The data must
|
||||
be pickable.
|
||||
"""
|
||||
return
|
||||
|
||||
def before_solve_mip(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
@@ -166,30 +99,6 @@ class Component(EnforceOverrides):
|
||||
"""
|
||||
return
|
||||
|
||||
def before_solve_mip_old(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
instance: Instance,
|
||||
model: Any,
|
||||
stats: LearningSolveStats,
|
||||
features: Features,
|
||||
training_data: TrainingSample,
|
||||
) -> None:
|
||||
"""
|
||||
Method called by LearningSolver before the MIP is solved.
|
||||
See before_solve_lp for a description of the parameters.
|
||||
"""
|
||||
return
|
||||
|
||||
def evaluate_old(self, instances: List[Instance]) -> List:
|
||||
ev = []
|
||||
for instance in instances:
|
||||
instance.load()
|
||||
for sample in instance.training_data:
|
||||
ev += [self.sample_evaluate_old(instance, sample)]
|
||||
instance.free()
|
||||
return ev
|
||||
|
||||
def fit(
|
||||
self,
|
||||
training_instances: List[Instance],
|
||||
@@ -200,16 +109,6 @@ class Component(EnforceOverrides):
|
||||
y[cat] = np.array(y[cat])
|
||||
self.fit_xy(x, y)
|
||||
|
||||
def fit_old(
|
||||
self,
|
||||
training_instances: List[Instance],
|
||||
) -> None:
|
||||
x, y = self.xy_instances_old(training_instances)
|
||||
for cat in x.keys():
|
||||
x[cat] = np.array(x[cat])
|
||||
y[cat] = np.array(y[cat])
|
||||
self.fit_xy(x, y)
|
||||
|
||||
def fit_xy(
|
||||
self,
|
||||
x: Dict[Hashable, np.ndarray],
|
||||
@@ -259,13 +158,6 @@ class Component(EnforceOverrides):
|
||||
) -> None:
|
||||
return
|
||||
|
||||
def sample_evaluate_old(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Dict[Hashable, Dict[str, float]]:
|
||||
return {}
|
||||
|
||||
def sample_evaluate(
|
||||
self,
|
||||
instance: Optional[Instance],
|
||||
@@ -285,18 +177,6 @@ class Component(EnforceOverrides):
|
||||
"""
|
||||
pass
|
||||
|
||||
def sample_xy_old(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
"""
|
||||
Returns a pair of x and y dictionaries containing, respectively, the matrices
|
||||
of ML features and the labels for the sample. If the training sample does not
|
||||
include label information, returns (x, {}).
|
||||
"""
|
||||
pass
|
||||
|
||||
def user_cut_cb(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
@@ -323,25 +203,3 @@ class Component(EnforceOverrides):
|
||||
y_combined[cat] += y_sample[cat]
|
||||
instance.free()
|
||||
return x_combined, y_combined
|
||||
|
||||
def xy_instances_old(
|
||||
self,
|
||||
instances: List[Instance],
|
||||
) -> Tuple[Dict, Dict]:
|
||||
x_combined: Dict = {}
|
||||
y_combined: Dict = {}
|
||||
for instance in instances:
|
||||
instance.load()
|
||||
for sample in instance.training_data:
|
||||
xy = self.sample_xy_old(instance, sample)
|
||||
if xy is None:
|
||||
continue
|
||||
x_sample, y_sample = xy
|
||||
for cat in x_sample.keys():
|
||||
if cat not in x_combined:
|
||||
x_combined[cat] = []
|
||||
y_combined[cat] = []
|
||||
x_combined[cat] += x_sample[cat]
|
||||
y_combined[cat] += y_sample[cat]
|
||||
instance.free()
|
||||
return x_combined, y_combined
|
||||
|
||||
@@ -12,7 +12,7 @@ from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.threshold import Threshold
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.features import TrainingSample, Sample
|
||||
from miplearn.features import Sample
|
||||
from miplearn.instance.base import Instance
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -37,44 +37,6 @@ class DynamicConstraintsComponent(Component):
|
||||
self.known_cids: List[str] = []
|
||||
self.attr = attr
|
||||
|
||||
def sample_xy_with_cids_old(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[
|
||||
Dict[Hashable, List[List[float]]],
|
||||
Dict[Hashable, List[List[bool]]],
|
||||
Dict[Hashable, List[str]],
|
||||
]:
|
||||
x: Dict[Hashable, List[List[float]]] = {}
|
||||
y: Dict[Hashable, List[List[bool]]] = {}
|
||||
cids: Dict[Hashable, List[str]] = {}
|
||||
for cid in self.known_cids:
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
y[category] = []
|
||||
cids[category] = []
|
||||
assert instance.features.instance is not None
|
||||
assert instance.features.instance.user_features is not None
|
||||
cfeatures = instance.get_constraint_features(cid)
|
||||
assert cfeatures is not None
|
||||
assert isinstance(cfeatures, list)
|
||||
for ci in cfeatures:
|
||||
assert isinstance(ci, float)
|
||||
f = list(instance.features.instance.user_features)
|
||||
f += cfeatures
|
||||
x[category] += [f]
|
||||
cids[category] += [cid]
|
||||
if getattr(sample, self.attr) is not None:
|
||||
if cid in getattr(sample, self.attr):
|
||||
y[category] += [[False, True]]
|
||||
else:
|
||||
y[category] += [[True, False]]
|
||||
return x, y, cids
|
||||
|
||||
def sample_xy_with_cids(
|
||||
self,
|
||||
instance: Optional[Instance],
|
||||
@@ -122,15 +84,6 @@ class DynamicConstraintsComponent(Component):
|
||||
y[category] += [[True, False]]
|
||||
return x, y, cids
|
||||
|
||||
@overrides
|
||||
def sample_xy_old(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
x, y, _ = self.sample_xy_with_cids_old(instance, sample)
|
||||
return x, y
|
||||
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
@@ -140,29 +93,6 @@ class DynamicConstraintsComponent(Component):
|
||||
x, y, _ = self.sample_xy_with_cids(instance, sample)
|
||||
return x, y
|
||||
|
||||
def sample_predict_old(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> List[Hashable]:
|
||||
pred: List[Hashable] = []
|
||||
if len(self.known_cids) == 0:
|
||||
logger.info("Classifiers not fitted. Skipping.")
|
||||
return pred
|
||||
x, _, cids = self.sample_xy_with_cids_old(instance, sample)
|
||||
for category in x.keys():
|
||||
assert category in self.classifiers
|
||||
assert category in self.thresholds
|
||||
clf = self.classifiers[category]
|
||||
thr = self.thresholds[category]
|
||||
nx = np.array(x[category])
|
||||
proba = clf.predict_proba(nx)
|
||||
t = thr.predict(nx)
|
||||
for i in range(proba.shape[0]):
|
||||
if proba[i][1] > t[1]:
|
||||
pred += [cids[category][i]]
|
||||
return pred
|
||||
|
||||
def sample_predict(
|
||||
self,
|
||||
instance: Instance,
|
||||
@@ -186,20 +116,6 @@ class DynamicConstraintsComponent(Component):
|
||||
pred += [cids[category][i]]
|
||||
return pred
|
||||
|
||||
@overrides
|
||||
def fit_old(self, training_instances: List[Instance]) -> None:
|
||||
collected_cids = set()
|
||||
for instance in training_instances:
|
||||
instance.load()
|
||||
for sample in instance.training_data:
|
||||
if getattr(sample, self.attr) is None:
|
||||
continue
|
||||
collected_cids |= getattr(sample, self.attr)
|
||||
instance.free()
|
||||
self.known_cids.clear()
|
||||
self.known_cids.extend(sorted(collected_cids))
|
||||
super().fit_old(training_instances)
|
||||
|
||||
@overrides
|
||||
def fit(self, training_instances: List[Instance]) -> None:
|
||||
collected_cids = set()
|
||||
|
||||
@@ -8,13 +8,13 @@ from typing import Dict, List, TYPE_CHECKING, Hashable, Tuple, Any, Optional, Se
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.classifiers.threshold import MinProbabilityThreshold, Threshold
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.components.dynamic_common import DynamicConstraintsComponent
|
||||
from miplearn.features import TrainingSample, Features, Sample
|
||||
from miplearn.features import Sample
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.types import LearningSolveStats
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -3,18 +3,18 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from typing import Any, TYPE_CHECKING, Hashable, Set, Tuple, Dict, List, Optional
|
||||
from typing import Any, TYPE_CHECKING, Hashable, Set, Tuple, Dict, List
|
||||
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.classifiers.threshold import Threshold, MinProbabilityThreshold
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.components.dynamic_common import DynamicConstraintsComponent
|
||||
from miplearn.features import Features, TrainingSample, Sample
|
||||
from miplearn.features import Sample
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.types import LearningSolveStats
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -12,7 +12,7 @@ from sklearn.linear_model import LinearRegression
|
||||
from miplearn.classifiers import Regressor
|
||||
from miplearn.classifiers.sklearn import ScikitLearnRegressor
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.features import TrainingSample, Features, Sample
|
||||
from miplearn.features import Sample
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.types import LearningSolveStats
|
||||
|
||||
|
||||
@@ -21,7 +21,7 @@ from miplearn.classifiers.adaptive import AdaptiveClassifier
|
||||
from miplearn.classifiers.threshold import MinPrecisionThreshold, Threshold
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.features import TrainingSample, Features, Sample
|
||||
from miplearn.features import Sample
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.types import (
|
||||
LearningSolveStats,
|
||||
|
||||
@@ -8,12 +8,12 @@ from typing import Dict, Tuple, List, Hashable, Any, TYPE_CHECKING, Set, Optiona
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.classifiers.threshold import MinProbabilityThreshold, Threshold
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.features import TrainingSample, Features, Constraint, Sample
|
||||
from miplearn.features import Constraint, Sample
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.types import LearningSolveStats
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -6,31 +6,17 @@ import collections
|
||||
import numbers
|
||||
from dataclasses import dataclass
|
||||
from math import log, isfinite
|
||||
from typing import TYPE_CHECKING, Dict, Optional, Set, List, Hashable
|
||||
from typing import TYPE_CHECKING, Dict, Optional, List, Hashable
|
||||
|
||||
import numpy as np
|
||||
|
||||
from miplearn.types import Solution, Category
|
||||
from miplearn.types import Category
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from miplearn.solvers.internal import InternalSolver, LPSolveStats, MIPSolveStats
|
||||
from miplearn.instance.base import Instance
|
||||
|
||||
|
||||
@dataclass
|
||||
class TrainingSample:
|
||||
lp_log: Optional[str] = None
|
||||
lp_solution: Optional[Solution] = None
|
||||
lp_value: Optional[float] = None
|
||||
lazy_enforced: Optional[Set[Hashable]] = None
|
||||
lower_bound: Optional[float] = None
|
||||
mip_log: Optional[str] = None
|
||||
solution: Optional[Solution] = None
|
||||
upper_bound: Optional[float] = None
|
||||
slacks: Optional[Dict[str, float]] = None
|
||||
user_cuts_enforced: Optional[Set[Hashable]] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class InstanceFeatures:
|
||||
user_features: Optional[List[float]] = None
|
||||
|
||||
@@ -8,7 +8,7 @@ from typing import Any, List, Optional, Hashable, TYPE_CHECKING
|
||||
|
||||
from overrides import EnforceOverrides
|
||||
|
||||
from miplearn.features import TrainingSample, Features, Sample
|
||||
from miplearn.features import Sample
|
||||
from miplearn.types import VariableName, Category
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -31,8 +31,6 @@ class Instance(ABC, EnforceOverrides):
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.training_data: List[TrainingSample] = []
|
||||
self.features: Features = Features()
|
||||
self.samples: List[Sample] = []
|
||||
|
||||
@abstractmethod
|
||||
|
||||
@@ -121,15 +121,11 @@ class PickleGzInstance(Instance):
|
||||
obj = read_pickle_gz(self.filename)
|
||||
assert isinstance(obj, Instance)
|
||||
self.instance = obj
|
||||
self.features = self.instance.features
|
||||
self.training_data = self.instance.training_data
|
||||
self.samples = self.instance.samples
|
||||
|
||||
@overrides
|
||||
def free(self) -> None:
|
||||
self.instance = None # type: ignore
|
||||
self.features = None # type: ignore
|
||||
self.training_data = None # type: ignore
|
||||
gc.collect()
|
||||
|
||||
@overrides
|
||||
|
||||
@@ -11,7 +11,8 @@ from scipy.spatial.distance import pdist, squareform
|
||||
from scipy.stats import uniform, randint
|
||||
from scipy.stats.distributions import rv_frozen
|
||||
|
||||
from miplearn import InternalSolver, BasePyomoSolver
|
||||
from miplearn.solvers.learning import InternalSolver
|
||||
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.types import VariableName, Category
|
||||
|
||||
|
||||
@@ -136,15 +136,6 @@ class GurobiSolver(InternalSolver):
|
||||
var.lb = value
|
||||
var.ub = value
|
||||
|
||||
@overrides
|
||||
def get_dual(self, cid: str) -> float:
|
||||
assert self.model is not None
|
||||
c = self.model.getConstrByName(cid)
|
||||
if self.is_infeasible():
|
||||
return c.farkasDual
|
||||
else:
|
||||
return c.pi
|
||||
|
||||
@overrides
|
||||
def get_constraint_attrs(self) -> List[str]:
|
||||
return [
|
||||
@@ -175,14 +166,6 @@ class GurobiSolver(InternalSolver):
|
||||
constraints[c.constrName] = constr
|
||||
return constraints
|
||||
|
||||
@overrides
|
||||
def get_sense(self) -> str:
|
||||
assert self.model is not None
|
||||
if self.model.modelSense == 1:
|
||||
return "min"
|
||||
else:
|
||||
return "max"
|
||||
|
||||
@overrides
|
||||
def get_solution(self) -> Optional[Solution]:
|
||||
assert self.model is not None
|
||||
@@ -224,12 +207,6 @@ class GurobiSolver(InternalSolver):
|
||||
"value",
|
||||
]
|
||||
|
||||
@overrides
|
||||
def get_variable_names(self) -> List[VariableName]:
|
||||
self._raise_if_callback()
|
||||
assert self.model is not None
|
||||
return [v.varName for v in self.model.getVars()]
|
||||
|
||||
@overrides
|
||||
def get_variables(self) -> Dict[str, Variable]:
|
||||
assert self.model is not None
|
||||
|
||||
@@ -124,10 +124,8 @@ class InternalSolver(ABC, EnforceOverrides):
|
||||
"""
|
||||
Sets the warm start to be used by the solver.
|
||||
|
||||
The solution should be a dictionary following the same format as the
|
||||
one produced by `get_solution`. Only one warm start is supported.
|
||||
Calling this function when a warm start already exists will
|
||||
remove the previous warm start.
|
||||
Only one warm start is supported. Calling this function when a warm start
|
||||
already exists will remove the previous warm start.
|
||||
"""
|
||||
pass
|
||||
|
||||
@@ -154,11 +152,8 @@ class InternalSolver(ABC, EnforceOverrides):
|
||||
@abstractmethod
|
||||
def fix(self, solution: Solution) -> None:
|
||||
"""
|
||||
Fixes the values of a subset of decision variables.
|
||||
|
||||
The values should be provided in the dictionary format generated by
|
||||
`get_solution`. Missing values in the solution indicate variables
|
||||
that should be left free.
|
||||
Fixes the values of a subset of decision variables. Missing values in the
|
||||
solution indicate variables that should be left free.
|
||||
"""
|
||||
pass
|
||||
|
||||
@@ -170,9 +165,7 @@ class InternalSolver(ABC, EnforceOverrides):
|
||||
with higher priority are picked first, given that they are fractional.
|
||||
Ties are solved arbitrarily. By default, all variables have priority zero.
|
||||
|
||||
The priorities should be provided in the dictionary format generated by
|
||||
`get_solution`. Missing values indicate variables whose priorities
|
||||
should not be modified.
|
||||
Missing values indicate variables whose priorities should not be modified.
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@@ -216,34 +209,6 @@ class InternalSolver(ABC, EnforceOverrides):
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_dual(self, cid: str) -> float:
|
||||
"""
|
||||
If the model is feasible and has been solved to optimality, returns the
|
||||
optimal value of the dual variable associated with this constraint. If the
|
||||
model is infeasible, returns a portion of the infeasibility certificate
|
||||
corresponding to the given constraint.
|
||||
|
||||
Only available for relaxed problems. Must be called after solve.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_sense(self) -> str:
|
||||
"""
|
||||
Returns the sense of the problem (either "min" or "max").
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_variable_names(self) -> List[VariableName]:
|
||||
"""
|
||||
Returns a list containing the names of all variables in the model. This
|
||||
method is used by the ML components to query what variables are there in the
|
||||
model before a solution is available.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def clone(self) -> "InternalSolver":
|
||||
"""
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
|
||||
import logging
|
||||
import traceback
|
||||
from typing import Optional, List, Any, cast, Callable, Dict, Tuple
|
||||
from typing import Optional, List, Any, cast, Dict, Tuple
|
||||
|
||||
from p_tqdm import p_map
|
||||
|
||||
@@ -13,7 +13,7 @@ from miplearn.components.dynamic_lazy import DynamicLazyConstraintsComponent
|
||||
from miplearn.components.dynamic_user_cuts import UserCutsComponent
|
||||
from miplearn.components.objective import ObjectiveValueComponent
|
||||
from miplearn.components.primal import PrimalSolutionComponent
|
||||
from miplearn.features import FeaturesExtractor, TrainingSample, Sample
|
||||
from miplearn.features import FeaturesExtractor, Sample
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.instance.picklegz import PickleGzInstance
|
||||
from miplearn.solvers import _RedirectOutput
|
||||
@@ -138,9 +138,7 @@ class LearningSolver:
|
||||
|
||||
# Initialize training sample
|
||||
# -------------------------------------------------------
|
||||
training_sample = TrainingSample()
|
||||
sample = Sample()
|
||||
instance.training_data.append(training_sample)
|
||||
instance.samples.append(sample)
|
||||
|
||||
# Initialize stats
|
||||
@@ -160,7 +158,6 @@ class LearningSolver:
|
||||
logger.info("Extracting features (after-load)...")
|
||||
features = FeaturesExtractor(self.internal_solver).extract(instance)
|
||||
features.extra = {}
|
||||
instance.features.__dict__ = features.__dict__
|
||||
sample.after_load = features
|
||||
|
||||
callback_args = (
|
||||
@@ -171,15 +168,6 @@ class LearningSolver:
|
||||
sample,
|
||||
)
|
||||
|
||||
callback_args_old = (
|
||||
self,
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
instance.features,
|
||||
training_sample,
|
||||
)
|
||||
|
||||
# Solve root LP relaxation
|
||||
# -------------------------------------------------------
|
||||
lp_stats = None
|
||||
@@ -187,19 +175,14 @@ class LearningSolver:
|
||||
logger.debug("Running before_solve_lp callbacks...")
|
||||
for component in self.components.values():
|
||||
component.before_solve_lp(*callback_args)
|
||||
component.before_solve_lp_old(*callback_args_old)
|
||||
|
||||
logger.info("Solving root LP relaxation...")
|
||||
lp_stats = self.internal_solver.solve_lp(tee=tee)
|
||||
stats.update(cast(LearningSolveStats, lp_stats.__dict__))
|
||||
training_sample.lp_solution = self.internal_solver.get_solution()
|
||||
training_sample.lp_value = lp_stats.lp_value
|
||||
training_sample.lp_log = lp_stats.lp_log
|
||||
|
||||
logger.debug("Running after_solve_lp callbacks...")
|
||||
for component in self.components.values():
|
||||
component.after_solve_lp(*callback_args)
|
||||
component.after_solve_lp_old(*callback_args_old)
|
||||
|
||||
# Extract features (after-lp)
|
||||
# -------------------------------------------------------
|
||||
@@ -245,7 +228,6 @@ class LearningSolver:
|
||||
logger.debug("Running before_solve_mip callbacks...")
|
||||
for component in self.components.values():
|
||||
component.before_solve_mip(*callback_args)
|
||||
component.before_solve_mip_old(*callback_args_old)
|
||||
|
||||
# Solve MIP
|
||||
# -------------------------------------------------------
|
||||
@@ -272,19 +254,11 @@ class LearningSolver:
|
||||
features.extra = {}
|
||||
sample.after_mip = features
|
||||
|
||||
# Add some information to training_sample
|
||||
# -------------------------------------------------------
|
||||
training_sample.lower_bound = mip_stats.mip_lower_bound
|
||||
training_sample.upper_bound = mip_stats.mip_upper_bound
|
||||
training_sample.mip_log = mip_stats.mip_log
|
||||
training_sample.solution = self.internal_solver.get_solution()
|
||||
|
||||
# After-solve callbacks
|
||||
# -------------------------------------------------------
|
||||
logger.debug("Calling after_solve_mip callbacks...")
|
||||
for component in self.components.values():
|
||||
component.after_solve_mip(*callback_args)
|
||||
component.after_solve_mip_old(*callback_args_old)
|
||||
|
||||
# Flush
|
||||
# -------------------------------------------------------
|
||||
@@ -414,12 +388,11 @@ class LearningSolver:
|
||||
|
||||
def fit(self, training_instances: List[Instance]) -> None:
|
||||
if len(training_instances) == 0:
|
||||
logger.warn("Empty list of training instances provided. Skipping.")
|
||||
logger.warning("Empty list of training instances provided. Skipping.")
|
||||
return
|
||||
for component in self.components.values():
|
||||
logger.info(f"Fitting {component.__class__.__name__}...")
|
||||
component.fit(training_instances)
|
||||
component.fit_old(training_instances)
|
||||
|
||||
def _add_component(self, component: Component) -> None:
|
||||
name = component.__class__.__name__
|
||||
|
||||
@@ -155,11 +155,6 @@ class BasePyomoSolver(InternalSolver):
|
||||
"slack",
|
||||
]
|
||||
|
||||
@overrides
|
||||
def get_dual(self, cid: str) -> float:
|
||||
constr = self._cname_to_constr[cid]
|
||||
return self._pyomo_solver.dual[constr]
|
||||
|
||||
@overrides
|
||||
def get_solution(self) -> Optional[Solution]:
|
||||
assert self.model is not None
|
||||
@@ -173,21 +168,6 @@ class BasePyomoSolver(InternalSolver):
|
||||
solution[f"{var}[{index}]"] = var[index].value
|
||||
return solution
|
||||
|
||||
@overrides
|
||||
def get_variable_names(self) -> List[VariableName]:
|
||||
assert self.model is not None
|
||||
variables: List[VariableName] = []
|
||||
for var in self.model.component_objects(Var):
|
||||
for index in var:
|
||||
if var[index].fixed:
|
||||
continue
|
||||
variables += [f"{var}[{index}]"]
|
||||
return variables
|
||||
|
||||
@overrides
|
||||
def get_sense(self) -> str:
|
||||
return self._obj_sense
|
||||
|
||||
@overrides
|
||||
def get_variables(self) -> Dict[str, Variable]:
|
||||
assert self.model is not None
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import Optional, Dict, Callable, Any, Union, Tuple, TYPE_CHECKING, Hashable
|
||||
from typing import Optional, Dict, Callable, Any, Union, TYPE_CHECKING, Hashable
|
||||
|
||||
from mypy_extensions import TypedDict
|
||||
|
||||
|
||||
@@ -9,8 +9,8 @@ from miplearn.features import Features
|
||||
from miplearn.instance.base import Instance
|
||||
|
||||
|
||||
def test_xy_instance_old() -> None:
|
||||
def _sample_xy_old(features: Features, sample: str) -> Tuple[Dict, Dict]:
|
||||
def test_xy_instance() -> None:
|
||||
def _sample_xy(features: Features, sample: str) -> Tuple[Dict, Dict]:
|
||||
x = {
|
||||
"s1": {
|
||||
"category_a": [
|
||||
@@ -55,12 +55,10 @@ def test_xy_instance_old() -> None:
|
||||
|
||||
comp = Component()
|
||||
instance_1 = Mock(spec=Instance)
|
||||
instance_1.training_data = ["s1", "s2"]
|
||||
instance_1.features = {}
|
||||
instance_1.samples = ["s1", "s2"]
|
||||
instance_2 = Mock(spec=Instance)
|
||||
instance_2.training_data = ["s3"]
|
||||
instance_2.features = {}
|
||||
comp.sample_xy_old = _sample_xy_old # type: ignore
|
||||
instance_2.samples = ["s3"]
|
||||
comp.sample_xy = _sample_xy # type: ignore
|
||||
x_expected = {
|
||||
"category_a": [
|
||||
[1, 2, 3],
|
||||
@@ -96,6 +94,6 @@ def test_xy_instance_old() -> None:
|
||||
[11],
|
||||
],
|
||||
}
|
||||
x_actual, y_actual = comp.xy_instances_old([instance_1, instance_2])
|
||||
x_actual, y_actual = comp.xy_instances([instance_1, instance_2])
|
||||
assert x_actual == x_expected
|
||||
assert y_actual == y_expected
|
||||
|
||||
@@ -13,7 +13,6 @@ from miplearn.classifiers.threshold import MinProbabilityThreshold
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.dynamic_lazy import DynamicLazyConstraintsComponent
|
||||
from miplearn.features import (
|
||||
TrainingSample,
|
||||
Features,
|
||||
InstanceFeatures,
|
||||
Sample,
|
||||
@@ -24,60 +23,6 @@ from miplearn.solvers.tests import assert_equals
|
||||
E = 0.1
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def training_instances_old() -> List[Instance]:
|
||||
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
|
||||
instances[0].features = Features(
|
||||
instance=InstanceFeatures(
|
||||
user_features=[50.0],
|
||||
),
|
||||
)
|
||||
instances[0].training_data = [
|
||||
TrainingSample(lazy_enforced={"c1", "c2"}),
|
||||
TrainingSample(lazy_enforced={"c2", "c3"}),
|
||||
]
|
||||
instances[0].get_constraint_category = Mock( # type: ignore
|
||||
side_effect=lambda cid: {
|
||||
"c1": "type-a",
|
||||
"c2": "type-a",
|
||||
"c3": "type-b",
|
||||
"c4": "type-b",
|
||||
}[cid]
|
||||
)
|
||||
instances[0].get_constraint_features = Mock( # type: ignore
|
||||
side_effect=lambda cid: {
|
||||
"c1": [1.0, 2.0, 3.0],
|
||||
"c2": [4.0, 5.0, 6.0],
|
||||
"c3": [1.0, 2.0],
|
||||
"c4": [3.0, 4.0],
|
||||
}[cid]
|
||||
)
|
||||
instances[1].features = Features(
|
||||
instance=InstanceFeatures(
|
||||
user_features=[80.0],
|
||||
),
|
||||
)
|
||||
instances[1].training_data = [
|
||||
TrainingSample(lazy_enforced={"c3", "c4"}),
|
||||
]
|
||||
instances[1].get_constraint_category = Mock( # type: ignore
|
||||
side_effect=lambda cid: {
|
||||
"c1": None,
|
||||
"c2": "type-a",
|
||||
"c3": "type-b",
|
||||
"c4": "type-b",
|
||||
}[cid]
|
||||
)
|
||||
instances[1].get_constraint_features = Mock( # type: ignore
|
||||
side_effect=lambda cid: {
|
||||
"c2": [7.0, 8.0, 9.0],
|
||||
"c3": [5.0, 6.0],
|
||||
"c4": [7.0, 8.0],
|
||||
}[cid]
|
||||
)
|
||||
return instances
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def training_instances() -> List[Instance]:
|
||||
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
|
||||
|
||||
@@ -12,7 +12,7 @@ from gurobipy import GRB
|
||||
from networkx import Graph
|
||||
from overrides import overrides
|
||||
|
||||
from miplearn import InternalSolver
|
||||
from miplearn.solvers.learning import InternalSolver
|
||||
from miplearn.components.dynamic_user_cuts import UserCutsComponent
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
|
||||
@@ -38,17 +38,21 @@ def test_instance() -> None:
|
||||
)
|
||||
instance = TravelingSalesmanInstance(n_cities, distances)
|
||||
solver = LearningSolver()
|
||||
stats = solver.solve(instance)
|
||||
solution = instance.training_data[0].solution
|
||||
assert solution is not None
|
||||
assert solution["x[(0, 1)]"] == 1.0
|
||||
assert solution["x[(0, 2)]"] == 0.0
|
||||
assert solution["x[(0, 3)]"] == 1.0
|
||||
assert solution["x[(1, 2)]"] == 1.0
|
||||
assert solution["x[(1, 3)]"] == 0.0
|
||||
assert solution["x[(2, 3)]"] == 1.0
|
||||
assert stats["mip_lower_bound"] == 4.0
|
||||
assert stats["mip_upper_bound"] == 4.0
|
||||
solver.solve(instance)
|
||||
assert len(instance.samples) == 1
|
||||
assert instance.samples[0].after_mip is not None
|
||||
features = instance.samples[0].after_mip
|
||||
assert features is not None
|
||||
assert features.variables is not None
|
||||
assert features.variables["x[(0, 1)]"].value == 1.0
|
||||
assert features.variables["x[(0, 2)]"].value == 0.0
|
||||
assert features.variables["x[(0, 3)]"].value == 1.0
|
||||
assert features.variables["x[(1, 2)]"].value == 1.0
|
||||
assert features.variables["x[(1, 3)]"].value == 0.0
|
||||
assert features.variables["x[(2, 3)]"].value == 1.0
|
||||
assert features.mip_solve is not None
|
||||
assert features.mip_solve.mip_lower_bound == 4.0
|
||||
assert features.mip_solve.mip_upper_bound == 4.0
|
||||
|
||||
|
||||
def test_subtour() -> None:
|
||||
@@ -67,18 +71,20 @@ def test_subtour() -> None:
|
||||
instance = TravelingSalesmanInstance(n_cities, distances)
|
||||
solver = LearningSolver()
|
||||
solver.solve(instance)
|
||||
assert len(instance.samples) == 1
|
||||
assert instance.samples[0].after_mip is not None
|
||||
assert instance.samples[0].after_mip.extra is not None
|
||||
lazy_enforced = instance.samples[0].after_mip.extra["lazy_enforced"]
|
||||
features = instance.samples[0].after_mip
|
||||
assert features.extra is not None
|
||||
assert "lazy_enforced" in features.extra
|
||||
lazy_enforced = features.extra["lazy_enforced"]
|
||||
assert lazy_enforced is not None
|
||||
assert len(lazy_enforced) > 0
|
||||
solution = instance.training_data[0].solution
|
||||
assert solution is not None
|
||||
assert solution["x[(0, 1)]"] == 1.0
|
||||
assert solution["x[(0, 4)]"] == 1.0
|
||||
assert solution["x[(1, 2)]"] == 1.0
|
||||
assert solution["x[(2, 3)]"] == 1.0
|
||||
assert solution["x[(3, 5)]"] == 1.0
|
||||
assert solution["x[(4, 5)]"] == 1.0
|
||||
assert features.variables is not None
|
||||
assert features.variables["x[(0, 1)]"].value == 1.0
|
||||
assert features.variables["x[(0, 4)]"].value == 1.0
|
||||
assert features.variables["x[(1, 2)]"].value == 1.0
|
||||
assert features.variables["x[(2, 3)]"].value == 1.0
|
||||
assert features.variables["x[(3, 5)]"].value == 1.0
|
||||
assert features.variables["x[(4, 5)]"].value == 1.0
|
||||
solver.fit([instance])
|
||||
solver.solve(instance)
|
||||
|
||||
@@ -34,29 +34,38 @@ def test_learning_solver(
|
||||
)
|
||||
|
||||
solver.solve(instance)
|
||||
assert hasattr(instance, "features")
|
||||
assert len(instance.samples) > 0
|
||||
sample = instance.samples[0]
|
||||
|
||||
sample = instance.training_data[0]
|
||||
assert sample.solution is not None
|
||||
assert sample.solution["x[0]"] == 1.0
|
||||
assert sample.solution["x[1]"] == 0.0
|
||||
assert sample.solution["x[2]"] == 1.0
|
||||
assert sample.solution["x[3]"] == 1.0
|
||||
assert sample.lower_bound == 1183.0
|
||||
assert sample.upper_bound == 1183.0
|
||||
assert sample.lp_solution is not None
|
||||
assert sample.lp_solution["x[0]"] is not None
|
||||
assert sample.lp_solution["x[1]"] is not None
|
||||
assert sample.lp_solution["x[2]"] is not None
|
||||
assert sample.lp_solution["x[3]"] is not None
|
||||
assert round(sample.lp_solution["x[0]"], 3) == 1.000
|
||||
assert round(sample.lp_solution["x[1]"], 3) == 0.923
|
||||
assert round(sample.lp_solution["x[2]"], 3) == 1.000
|
||||
assert round(sample.lp_solution["x[3]"], 3) == 0.000
|
||||
assert sample.lp_value is not None
|
||||
assert round(sample.lp_value, 3) == 1287.923
|
||||
assert sample.mip_log is not None
|
||||
assert len(sample.mip_log) > 100
|
||||
after_mip = sample.after_mip
|
||||
assert after_mip is not None
|
||||
assert after_mip.variables is not None
|
||||
assert after_mip.mip_solve is not None
|
||||
assert after_mip.variables["x[0]"].value == 1.0
|
||||
assert after_mip.variables["x[1]"].value == 0.0
|
||||
assert after_mip.variables["x[2]"].value == 1.0
|
||||
assert after_mip.variables["x[3]"].value == 1.0
|
||||
assert after_mip.mip_solve.mip_lower_bound == 1183.0
|
||||
assert after_mip.mip_solve.mip_upper_bound == 1183.0
|
||||
assert after_mip.mip_solve.mip_log is not None
|
||||
assert len(after_mip.mip_solve.mip_log) > 100
|
||||
|
||||
after_lp = sample.after_lp
|
||||
assert after_lp is not None
|
||||
assert after_lp.variables is not None
|
||||
assert after_lp.lp_solve is not None
|
||||
assert after_lp.variables["x[0]"].value is not None
|
||||
assert after_lp.variables["x[1]"].value is not None
|
||||
assert after_lp.variables["x[2]"].value is not None
|
||||
assert after_lp.variables["x[3]"].value is not None
|
||||
assert round(after_lp.variables["x[0]"].value, 3) == 1.000
|
||||
assert round(after_lp.variables["x[1]"].value, 3) == 0.923
|
||||
assert round(after_lp.variables["x[2]"].value, 3) == 1.000
|
||||
assert round(after_lp.variables["x[3]"].value, 3) == 0.000
|
||||
assert after_lp.lp_solve.lp_value is not None
|
||||
assert round(after_lp.lp_solve.lp_value, 3) == 1287.923
|
||||
assert after_lp.lp_solve.lp_log is not None
|
||||
assert len(after_lp.lp_solve.lp_log) > 100
|
||||
|
||||
solver.fit([instance])
|
||||
solver.solve(instance)
|
||||
@@ -90,9 +99,7 @@ def test_parallel_solve(
|
||||
results = solver.parallel_solve(instances, n_jobs=3)
|
||||
assert len(results) == 10
|
||||
for instance in instances:
|
||||
data = instance.training_data[0]
|
||||
assert data.solution is not None
|
||||
assert len(data.solution.keys()) == 5
|
||||
assert len(instance.samples) == 1
|
||||
|
||||
|
||||
def test_solve_fit_from_disk(
|
||||
@@ -111,19 +118,13 @@ def test_solve_fit_from_disk(
|
||||
solver = LearningSolver(solver=internal_solver)
|
||||
solver.solve(instances[0])
|
||||
instance_loaded = read_pickle_gz(cast(PickleGzInstance, instances[0]).filename)
|
||||
assert len(instance_loaded.training_data) > 0
|
||||
assert instance_loaded.features.instance is not None
|
||||
assert instance_loaded.features.variables is not None
|
||||
assert instance_loaded.features.constraints is not None
|
||||
assert len(instance_loaded.samples) > 0
|
||||
|
||||
# Test: parallel_solve
|
||||
solver.parallel_solve(instances)
|
||||
for instance in instances:
|
||||
instance_loaded = read_pickle_gz(cast(PickleGzInstance, instance).filename)
|
||||
assert len(instance_loaded.training_data) > 0
|
||||
assert instance_loaded.features.instance is not None
|
||||
assert instance_loaded.features.variables is not None
|
||||
assert instance_loaded.features.constraints is not None
|
||||
assert len(instance_loaded.samples) > 0
|
||||
|
||||
# Delete temporary files
|
||||
for instance in instances:
|
||||
|
||||
Reference in New Issue
Block a user