mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Make sample_ method accept instance
This commit is contained in:
@@ -108,14 +108,13 @@ class Component:
|
||||
|
||||
@staticmethod
|
||||
def sample_xy(
|
||||
features: Features,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
"""
|
||||
Given a set of features and a training sample, returns a pair of x and y
|
||||
dictionaries containing, respectively, the matrices of ML features and the
|
||||
labels for the sample. If the training sample does not include label
|
||||
information, returns (x, {}).
|
||||
Returns a pair of x and y dictionaries containing, respectively, the matrices
|
||||
of ML features and the labels for the sample. If the training sample does not
|
||||
include label information, returns (x, {}).
|
||||
"""
|
||||
pass
|
||||
|
||||
@@ -128,7 +127,7 @@ class Component:
|
||||
for instance in instances:
|
||||
assert isinstance(instance, Instance)
|
||||
for sample in instance.training_data:
|
||||
xy = self.sample_xy(instance.features, sample)
|
||||
xy = self.sample_xy(instance, sample)
|
||||
if xy is None:
|
||||
continue
|
||||
x_sample, y_sample = xy
|
||||
@@ -203,12 +202,12 @@ class Component:
|
||||
ev = []
|
||||
for instance in instances:
|
||||
for sample in instance.training_data:
|
||||
ev += [self.sample_evaluate(instance.features, sample)]
|
||||
ev += [self.sample_evaluate(instance, sample)]
|
||||
return ev
|
||||
|
||||
def sample_evaluate(
|
||||
self,
|
||||
features: Features,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Dict[Hashable, Dict[str, float]]:
|
||||
return {}
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
|
||||
import logging
|
||||
import sys
|
||||
from typing import Any, Dict, List, TYPE_CHECKING, Set, Hashable
|
||||
from typing import Any, Dict, List, TYPE_CHECKING, Hashable
|
||||
|
||||
import numpy as np
|
||||
from tqdm.auto import tqdm
|
||||
@@ -14,12 +14,11 @@ from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.extractors import InstanceFeaturesExtractor
|
||||
from miplearn.features import TrainingSample
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from miplearn.solvers.learning import LearningSolver, Instance
|
||||
from miplearn.solvers.learning import Instance
|
||||
|
||||
|
||||
class DynamicLazyConstraintsComponent(Component):
|
||||
|
||||
@@ -66,7 +66,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
if not features.instance.lazy_constraint_count == 0:
|
||||
logger.info("Instance does not have static lazy constraints. Skipping.")
|
||||
logger.info("Predicting required lazy constraints...")
|
||||
self.enforced_cids = set(self.sample_predict(features, training_data))
|
||||
self.enforced_cids = set(self.sample_predict(instance, training_data))
|
||||
logger.info("Moving lazy constraints to the pool...")
|
||||
self.pool = {}
|
||||
for (cid, cdict) in features.constraints.items():
|
||||
@@ -144,14 +144,14 @@ class StaticLazyConstraintsComponent(Component):
|
||||
|
||||
def sample_predict(
|
||||
self,
|
||||
features: Features,
|
||||
instance: "Instance",
|
||||
sample: TrainingSample,
|
||||
) -> List[str]:
|
||||
assert features.constraints is not None
|
||||
assert instance.features.constraints is not None
|
||||
|
||||
x, y = self.sample_xy(features, sample)
|
||||
x, y = self.sample_xy(instance, sample)
|
||||
category_to_cids: Dict[Hashable, List[str]] = {}
|
||||
for (cid, cfeatures) in features.constraints.items():
|
||||
for (cid, cfeatures) in instance.features.constraints.items():
|
||||
if cfeatures.category is None:
|
||||
continue
|
||||
category = cfeatures.category
|
||||
@@ -173,13 +173,13 @@ class StaticLazyConstraintsComponent(Component):
|
||||
|
||||
@staticmethod
|
||||
def sample_xy(
|
||||
features: Features,
|
||||
instance: "Instance",
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
|
||||
assert features.constraints is not None
|
||||
assert instance.features.constraints is not None
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
for (cid, cfeatures) in features.constraints.items():
|
||||
for (cid, cfeatures) in instance.features.constraints.items():
|
||||
if not cfeatures.lazy:
|
||||
continue
|
||||
category = cfeatures.category
|
||||
|
||||
@@ -44,7 +44,7 @@ class ObjectiveValueComponent(Component):
|
||||
training_data: TrainingSample,
|
||||
) -> None:
|
||||
logger.info("Predicting optimal value...")
|
||||
pred = self.sample_predict(features, training_data)
|
||||
pred = self.sample_predict(instance, training_data)
|
||||
for (c, v) in pred.items():
|
||||
logger.info(f"Predicted {c.lower()}: %.6e" % v)
|
||||
stats[f"Objective: Predicted {c.lower()}"] = v # type: ignore
|
||||
@@ -61,11 +61,11 @@ class ObjectiveValueComponent(Component):
|
||||
|
||||
def sample_predict(
|
||||
self,
|
||||
features: Features,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Dict[str, float]:
|
||||
pred: Dict[str, float] = {}
|
||||
x, _ = self.sample_xy(features, sample)
|
||||
x, _ = self.sample_xy(instance, sample)
|
||||
for c in ["Upper bound", "Lower bound"]:
|
||||
if c in self.regressors is not None:
|
||||
pred[c] = self.regressors[c].predict(np.array(x[c]))[0, 0]
|
||||
@@ -75,14 +75,15 @@ class ObjectiveValueComponent(Component):
|
||||
|
||||
@staticmethod
|
||||
def sample_xy(
|
||||
features: Features,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
|
||||
assert features.instance is not None
|
||||
assert features.instance.user_features is not None
|
||||
ifeatures = instance.features.instance
|
||||
assert ifeatures is not None
|
||||
assert ifeatures.user_features is not None
|
||||
x: Dict[Hashable, List[List[float]]] = {}
|
||||
y: Dict[Hashable, List[List[float]]] = {}
|
||||
f = list(features.instance.user_features)
|
||||
f = list(ifeatures.user_features)
|
||||
if sample.lp_value is not None:
|
||||
f += [sample.lp_value]
|
||||
x["Upper bound"] = [f]
|
||||
@@ -95,7 +96,7 @@ class ObjectiveValueComponent(Component):
|
||||
|
||||
def sample_evaluate(
|
||||
self,
|
||||
features: Features,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Dict[Hashable, Dict[str, float]]:
|
||||
def compare(y_pred: float, y_actual: float) -> Dict[str, float]:
|
||||
@@ -108,7 +109,7 @@ class ObjectiveValueComponent(Component):
|
||||
}
|
||||
|
||||
result: Dict[Hashable, Dict[str, float]] = {}
|
||||
pred = self.sample_predict(features, sample)
|
||||
pred = self.sample_predict(instance, sample)
|
||||
if sample.upper_bound is not None:
|
||||
result["Upper bound"] = compare(pred["Upper bound"], sample.upper_bound)
|
||||
if sample.lower_bound is not None:
|
||||
|
||||
@@ -73,7 +73,7 @@ class PrimalSolutionComponent(Component):
|
||||
|
||||
# Predict solution and provide it to the solver
|
||||
logger.info("Predicting MIP solution...")
|
||||
solution = self.sample_predict(features, training_data)
|
||||
solution = self.sample_predict(instance, training_data)
|
||||
assert solver.internal_solver is not None
|
||||
if self.mode == "heuristic":
|
||||
solver.internal_solver.fix(solution)
|
||||
@@ -101,20 +101,20 @@ class PrimalSolutionComponent(Component):
|
||||
|
||||
def sample_predict(
|
||||
self,
|
||||
features: Features,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Solution:
|
||||
assert features.variables is not None
|
||||
assert instance.features.variables is not None
|
||||
|
||||
# Initialize empty solution
|
||||
solution: Solution = {}
|
||||
for (var_name, var_dict) in features.variables.items():
|
||||
for (var_name, var_dict) in instance.features.variables.items():
|
||||
solution[var_name] = {}
|
||||
for idx in var_dict.keys():
|
||||
solution[var_name][idx] = None
|
||||
|
||||
# Compute y_pred
|
||||
x, _ = self.sample_xy(features, sample)
|
||||
x, _ = self.sample_xy(instance, sample)
|
||||
y_pred = {}
|
||||
for category in x.keys():
|
||||
assert category in self.classifiers, (
|
||||
@@ -133,7 +133,7 @@ class PrimalSolutionComponent(Component):
|
||||
|
||||
# Convert y_pred into solution
|
||||
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
|
||||
for (var_name, var_dict) in features.variables.items():
|
||||
for (var_name, var_dict) in instance.features.variables.items():
|
||||
for (idx, var_features) in var_dict.items():
|
||||
category = var_features.category
|
||||
offset = category_offset[category]
|
||||
@@ -147,16 +147,16 @@ class PrimalSolutionComponent(Component):
|
||||
|
||||
@staticmethod
|
||||
def sample_xy(
|
||||
features: Features,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
|
||||
assert features.variables is not None
|
||||
assert instance.features.variables is not None
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
solution: Optional[Solution] = None
|
||||
if sample.solution is not None:
|
||||
solution = sample.solution
|
||||
for (var_name, var_dict) in features.variables.items():
|
||||
for (var_name, var_dict) in instance.features.variables.items():
|
||||
for (idx, var_features) in var_dict.items():
|
||||
category = var_features.category
|
||||
if category is None:
|
||||
@@ -186,12 +186,12 @@ class PrimalSolutionComponent(Component):
|
||||
|
||||
def sample_evaluate(
|
||||
self,
|
||||
features: Features,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Dict[Hashable, Dict[str, float]]:
|
||||
solution_actual = sample.solution
|
||||
assert solution_actual is not None
|
||||
solution_pred = self.sample_predict(features, sample)
|
||||
solution_pred = self.sample_predict(instance, sample)
|
||||
vars_all, vars_one, vars_zero = set(), set(), set()
|
||||
pred_one_positive, pred_zero_positive = set(), set()
|
||||
for (varname, var_dict) in solution_actual.items():
|
||||
|
||||
Reference in New Issue
Block a user