mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-08 02:18:51 -06:00
Make sample_ method accept instance
This commit is contained in:
@@ -7,7 +7,7 @@ from unittest.mock import Mock
|
||||
import pytest
|
||||
from numpy.testing import assert_array_equal
|
||||
|
||||
from miplearn import GurobiPyomoSolver, LearningSolver, Regressor
|
||||
from miplearn import GurobiPyomoSolver, LearningSolver, Regressor, Instance
|
||||
from miplearn.components.objective import ObjectiveValueComponent
|
||||
from miplearn.features import TrainingSample, InstanceFeatures, Features
|
||||
from tests.fixtures.knapsack import get_knapsack_instance
|
||||
@@ -15,6 +15,13 @@ from tests.fixtures.knapsack import get_knapsack_instance
|
||||
import numpy as np
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def instance(features: Features) -> Instance:
|
||||
instance = Mock(spec=Instance)
|
||||
instance.features = features
|
||||
return instance
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def features() -> Features:
|
||||
return Features(
|
||||
@@ -50,7 +57,7 @@ def sample_without_ub() -> TrainingSample:
|
||||
|
||||
|
||||
def test_sample_xy(
|
||||
features: Features,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> None:
|
||||
x_expected = {
|
||||
@@ -61,7 +68,7 @@ def test_sample_xy(
|
||||
"Lower bound": [[1.0]],
|
||||
"Upper bound": [[2.0]],
|
||||
}
|
||||
xy = ObjectiveValueComponent.sample_xy(features, sample)
|
||||
xy = ObjectiveValueComponent.sample_xy(instance, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
@@ -69,7 +76,7 @@ def test_sample_xy(
|
||||
|
||||
|
||||
def test_sample_xy_without_lp(
|
||||
features: Features,
|
||||
instance: Instance,
|
||||
sample_without_lp: TrainingSample,
|
||||
) -> None:
|
||||
x_expected = {
|
||||
@@ -80,7 +87,7 @@ def test_sample_xy_without_lp(
|
||||
"Lower bound": [[1.0]],
|
||||
"Upper bound": [[2.0]],
|
||||
}
|
||||
xy = ObjectiveValueComponent.sample_xy(features, sample_without_lp)
|
||||
xy = ObjectiveValueComponent.sample_xy(instance, sample_without_lp)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
@@ -88,7 +95,7 @@ def test_sample_xy_without_lp(
|
||||
|
||||
|
||||
def test_sample_xy_without_ub(
|
||||
features: Features,
|
||||
instance: Instance,
|
||||
sample_without_ub: TrainingSample,
|
||||
) -> None:
|
||||
x_expected = {
|
||||
@@ -96,7 +103,7 @@ def test_sample_xy_without_ub(
|
||||
"Upper bound": [[1.0, 2.0, 3.0]],
|
||||
}
|
||||
y_expected = {"Lower bound": [[1.0]]}
|
||||
xy = ObjectiveValueComponent.sample_xy(features, sample_without_ub)
|
||||
xy = ObjectiveValueComponent.sample_xy(instance, sample_without_ub)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
@@ -170,10 +177,10 @@ def test_fit_xy_without_ub() -> None:
|
||||
|
||||
|
||||
def test_sample_predict(
|
||||
features: Features,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> None:
|
||||
x, y = ObjectiveValueComponent.sample_xy(features, sample)
|
||||
x, y = ObjectiveValueComponent.sample_xy(instance, sample)
|
||||
comp = ObjectiveValueComponent()
|
||||
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
||||
comp.regressors["Upper bound"] = Mock(spec=Regressor)
|
||||
@@ -183,7 +190,7 @@ def test_sample_predict(
|
||||
comp.regressors["Upper bound"].predict = Mock( # type: ignore
|
||||
side_effect=lambda _: np.array([[60.0]])
|
||||
)
|
||||
pred = comp.sample_predict(features, sample)
|
||||
pred = comp.sample_predict(instance, sample)
|
||||
assert pred == {
|
||||
"Lower bound": 50.0,
|
||||
"Upper bound": 60.0,
|
||||
@@ -199,16 +206,16 @@ def test_sample_predict(
|
||||
|
||||
|
||||
def test_sample_predict_without_ub(
|
||||
features: Features,
|
||||
instance: Instance,
|
||||
sample_without_ub: TrainingSample,
|
||||
) -> None:
|
||||
x, y = ObjectiveValueComponent.sample_xy(features, sample_without_ub)
|
||||
x, y = ObjectiveValueComponent.sample_xy(instance, sample_without_ub)
|
||||
comp = ObjectiveValueComponent()
|
||||
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
||||
comp.regressors["Lower bound"].predict = Mock( # type: ignore
|
||||
side_effect=lambda _: np.array([[50.0]])
|
||||
)
|
||||
pred = comp.sample_predict(features, sample_without_ub)
|
||||
pred = comp.sample_predict(instance, sample_without_ub)
|
||||
assert pred == {
|
||||
"Lower bound": 50.0,
|
||||
}
|
||||
@@ -218,13 +225,13 @@ def test_sample_predict_without_ub(
|
||||
)
|
||||
|
||||
|
||||
def test_sample_evaluate(features: Features, sample: TrainingSample) -> None:
|
||||
def test_sample_evaluate(instance: Instance, sample: TrainingSample) -> None:
|
||||
comp = ObjectiveValueComponent()
|
||||
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
||||
comp.regressors["Lower bound"].predict = lambda _: np.array([[1.05]]) # type: ignore
|
||||
comp.regressors["Upper bound"] = Mock(spec=Regressor)
|
||||
comp.regressors["Upper bound"].predict = lambda _: np.array([[2.50]]) # type: ignore
|
||||
ev = comp.sample_evaluate(features, sample)
|
||||
ev = comp.sample_evaluate(instance, sample)
|
||||
assert ev == {
|
||||
"Lower bound": {
|
||||
"Actual value": 1.0,
|
||||
|
||||
Reference in New Issue
Block a user