mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Remove unused classes and functions
This commit is contained in:
@@ -4,7 +4,6 @@
|
||||
|
||||
import collections
|
||||
import numbers
|
||||
from copy import copy
|
||||
from dataclasses import dataclass
|
||||
from math import log, isfinite
|
||||
from typing import TYPE_CHECKING, Dict, Optional, List, Hashable, Tuple, Any
|
||||
@@ -12,28 +11,14 @@ from typing import TYPE_CHECKING, Dict, Optional, List, Hashable, Tuple, Any
|
||||
import numpy as np
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from miplearn.solvers.internal import InternalSolver, LPSolveStats, MIPSolveStats
|
||||
from miplearn.solvers.internal import InternalSolver
|
||||
from miplearn.instance.base import Instance
|
||||
|
||||
|
||||
@dataclass
|
||||
class InstanceFeatures:
|
||||
user_features: Optional[List[float]] = None
|
||||
lazy_constraint_count: int = 0
|
||||
|
||||
def to_list(self) -> List[float]:
|
||||
features: List[float] = []
|
||||
if self.user_features is not None:
|
||||
features.extend(self.user_features)
|
||||
_clip(features)
|
||||
return features
|
||||
|
||||
|
||||
@dataclass
|
||||
class VariableFeatures:
|
||||
names: Optional[List[str]] = None
|
||||
basis_status: Optional[List[str]] = None
|
||||
categories: Optional[List[Optional[Hashable]]] = None
|
||||
lower_bounds: Optional[List[float]] = None
|
||||
obj_coeffs: Optional[List[float]] = None
|
||||
reduced_costs: Optional[List[float]] = None
|
||||
@@ -45,42 +30,12 @@ class VariableFeatures:
|
||||
sa_ub_up: Optional[List[float]] = None
|
||||
types: Optional[List[str]] = None
|
||||
upper_bounds: Optional[List[float]] = None
|
||||
user_features: Optional[List[Optional[List[float]]]] = None
|
||||
values: Optional[List[float]] = None
|
||||
|
||||
# Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
|
||||
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
|
||||
alvarez_2017: Optional[List[List[float]]] = None
|
||||
|
||||
def to_list(self, index: int) -> List[float]:
|
||||
features: List[float] = []
|
||||
for attr in [
|
||||
"lower_bounds",
|
||||
"obj_coeffs",
|
||||
"reduced_costs",
|
||||
"sa_lb_down",
|
||||
"sa_lb_up",
|
||||
"sa_obj_down",
|
||||
"sa_obj_up",
|
||||
"sa_ub_down",
|
||||
"sa_ub_up",
|
||||
"upper_bounds",
|
||||
"values",
|
||||
]:
|
||||
if getattr(self, attr) is not None:
|
||||
features.append(getattr(self, attr)[index])
|
||||
for attr in ["user_features", "alvarez_2017"]:
|
||||
if getattr(self, attr) is not None:
|
||||
if getattr(self, attr)[index] is not None:
|
||||
features.extend(getattr(self, attr)[index])
|
||||
_clip(features)
|
||||
return features
|
||||
|
||||
|
||||
@dataclass
|
||||
class ConstraintFeatures:
|
||||
basis_status: Optional[List[str]] = None
|
||||
categories: Optional[List[Optional[Hashable]]] = None
|
||||
dual_values: Optional[List[float]] = None
|
||||
lazy: Optional[List[bool]] = None
|
||||
lhs: Optional[List[List[Tuple[str, float]]]] = None
|
||||
@@ -90,13 +45,11 @@ class ConstraintFeatures:
|
||||
sa_rhs_up: Optional[List[float]] = None
|
||||
senses: Optional[List[str]] = None
|
||||
slacks: Optional[List[float]] = None
|
||||
user_features: Optional[List[Optional[List[float]]]] = None
|
||||
|
||||
@staticmethod
|
||||
def from_sample(sample: "Sample") -> "ConstraintFeatures":
|
||||
return ConstraintFeatures(
|
||||
basis_status=sample.get("lp_constr_basis_status"),
|
||||
categories=sample.get("constr_categories"),
|
||||
dual_values=sample.get("lp_constr_dual_values"),
|
||||
lazy=sample.get("constr_lazy"),
|
||||
lhs=sample.get("constr_lhs"),
|
||||
@@ -106,29 +59,11 @@ class ConstraintFeatures:
|
||||
sa_rhs_up=sample.get("lp_constr_sa_rhs_up"),
|
||||
senses=sample.get("constr_senses"),
|
||||
slacks=sample.get("lp_constr_slacks"),
|
||||
user_features=sample.get("constr_features_user"),
|
||||
)
|
||||
|
||||
def to_list(self, index: int) -> List[float]:
|
||||
features: List[float] = []
|
||||
for attr in [
|
||||
"dual_values",
|
||||
"rhs",
|
||||
"slacks",
|
||||
]:
|
||||
if getattr(self, attr) is not None:
|
||||
features.append(getattr(self, attr)[index])
|
||||
for attr in ["user_features"]:
|
||||
if getattr(self, attr) is not None:
|
||||
if getattr(self, attr)[index] is not None:
|
||||
features.extend(getattr(self, attr)[index])
|
||||
_clip(features)
|
||||
return features
|
||||
|
||||
def __getitem__(self, selected: List[bool]) -> "ConstraintFeatures":
|
||||
return ConstraintFeatures(
|
||||
basis_status=self._filter(self.basis_status, selected),
|
||||
categories=self._filter(self.categories, selected),
|
||||
dual_values=self._filter(self.dual_values, selected),
|
||||
names=self._filter(self.names, selected),
|
||||
lazy=self._filter(self.lazy, selected),
|
||||
@@ -138,7 +73,6 @@ class ConstraintFeatures:
|
||||
sa_rhs_up=self._filter(self.sa_rhs_up, selected),
|
||||
senses=self._filter(self.senses, selected),
|
||||
slacks=self._filter(self.slacks, selected),
|
||||
user_features=self._filter(self.user_features, selected),
|
||||
)
|
||||
|
||||
def _filter(
|
||||
@@ -151,15 +85,6 @@ class ConstraintFeatures:
|
||||
return [obj[i] for (i, selected_i) in enumerate(selected) if selected_i]
|
||||
|
||||
|
||||
@dataclass
|
||||
class Features:
|
||||
instance: Optional[InstanceFeatures] = None
|
||||
variables: Optional[VariableFeatures] = None
|
||||
constraints: Optional[ConstraintFeatures] = None
|
||||
lp_solve: Optional["LPSolveStats"] = None
|
||||
mip_solve: Optional["MIPSolveStats"] = None
|
||||
|
||||
|
||||
class Sample:
|
||||
def __init__(
|
||||
self,
|
||||
@@ -300,29 +225,6 @@ class FeaturesExtractor:
|
||||
sample.put("mip_var_values", variables.values)
|
||||
sample.put("mip_constr_slacks", constraints.slacks)
|
||||
|
||||
def extract(
|
||||
self,
|
||||
instance: "Instance",
|
||||
solver: "InternalSolver",
|
||||
with_static: bool = True,
|
||||
) -> Features:
|
||||
features = Features()
|
||||
features.variables = solver.get_variables(
|
||||
with_static=with_static,
|
||||
with_sa=self.with_sa,
|
||||
)
|
||||
features.constraints = solver.get_constraints(
|
||||
with_static=with_static,
|
||||
with_sa=self.with_sa,
|
||||
with_lhs=self.with_lhs,
|
||||
)
|
||||
if with_static:
|
||||
self._extract_user_features_vars_old(instance, features)
|
||||
self._extract_user_features_constrs_old(instance, features)
|
||||
self._extract_user_features_instance_old(instance, features)
|
||||
self._extract_alvarez_2017_old(features)
|
||||
return features
|
||||
|
||||
def _extract_user_features_vars(
|
||||
self,
|
||||
instance: "Instance",
|
||||
@@ -417,101 +319,6 @@ class FeaturesExtractor:
|
||||
sample.put("constr_lazy", lazy)
|
||||
sample.put("constr_categories", categories)
|
||||
|
||||
def _extract_user_features_vars_old(
|
||||
self,
|
||||
instance: "Instance",
|
||||
features: Features,
|
||||
) -> None:
|
||||
assert features.variables is not None
|
||||
assert features.variables.names is not None
|
||||
categories: List[Optional[Hashable]] = []
|
||||
user_features: List[Optional[List[float]]] = []
|
||||
var_features_dict = instance.get_variable_features()
|
||||
var_categories_dict = instance.get_variable_categories()
|
||||
|
||||
for (i, var_name) in enumerate(features.variables.names):
|
||||
if var_name not in var_categories_dict:
|
||||
user_features.append(None)
|
||||
categories.append(None)
|
||||
continue
|
||||
category: Hashable = var_categories_dict[var_name]
|
||||
assert isinstance(category, collections.Hashable), (
|
||||
f"Variable category must be be hashable. "
|
||||
f"Found {type(category).__name__} instead for var={var_name}."
|
||||
)
|
||||
categories.append(category)
|
||||
user_features_i: Optional[List[float]] = None
|
||||
if var_name in var_features_dict:
|
||||
user_features_i = var_features_dict[var_name]
|
||||
if isinstance(user_features_i, np.ndarray):
|
||||
user_features_i = user_features_i.tolist()
|
||||
assert isinstance(user_features_i, list), (
|
||||
f"Variable features must be a list. "
|
||||
f"Found {type(user_features_i).__name__} instead for "
|
||||
f"var={var_name}."
|
||||
)
|
||||
for v in user_features_i:
|
||||
assert isinstance(v, numbers.Real), (
|
||||
f"Variable features must be a list of numbers. "
|
||||
f"Found {type(v).__name__} instead "
|
||||
f"for var={var_name}."
|
||||
)
|
||||
user_features_i = list(user_features_i)
|
||||
user_features.append(user_features_i)
|
||||
features.variables.categories = categories
|
||||
features.variables.user_features = user_features
|
||||
|
||||
def _extract_user_features_constrs_old(
|
||||
self,
|
||||
instance: "Instance",
|
||||
features: Features,
|
||||
) -> None:
|
||||
assert features.constraints is not None
|
||||
assert features.constraints.names is not None
|
||||
has_static_lazy = instance.has_static_lazy_constraints()
|
||||
user_features: List[Optional[List[float]]] = []
|
||||
categories: List[Optional[Hashable]] = []
|
||||
lazy: List[bool] = []
|
||||
constr_categories_dict = instance.get_constraint_categories()
|
||||
constr_features_dict = instance.get_constraint_features()
|
||||
|
||||
for (cidx, cname) in enumerate(features.constraints.names):
|
||||
category: Optional[Hashable] = cname
|
||||
if cname in constr_categories_dict:
|
||||
category = constr_categories_dict[cname]
|
||||
if category is None:
|
||||
user_features.append(None)
|
||||
categories.append(None)
|
||||
continue
|
||||
assert isinstance(category, collections.Hashable), (
|
||||
f"Constraint category must be hashable. "
|
||||
f"Found {type(category).__name__} instead for cname={cname}.",
|
||||
)
|
||||
categories.append(category)
|
||||
cf: Optional[List[float]] = None
|
||||
if cname in constr_features_dict:
|
||||
cf = constr_features_dict[cname]
|
||||
if isinstance(cf, np.ndarray):
|
||||
cf = cf.tolist()
|
||||
assert isinstance(cf, list), (
|
||||
f"Constraint features must be a list. "
|
||||
f"Found {type(cf).__name__} instead for cname={cname}."
|
||||
)
|
||||
for f in cf:
|
||||
assert isinstance(f, numbers.Real), (
|
||||
f"Constraint features must be a list of numbers. "
|
||||
f"Found {type(f).__name__} instead for cname={cname}."
|
||||
)
|
||||
cf = list(cf)
|
||||
user_features.append(cf)
|
||||
if has_static_lazy:
|
||||
lazy.append(instance.is_constraint_lazy(cname))
|
||||
else:
|
||||
lazy.append(False)
|
||||
features.constraints.user_features = user_features
|
||||
features.constraints.lazy = lazy
|
||||
features.constraints.categories = categories
|
||||
|
||||
def _extract_user_features_instance(
|
||||
self,
|
||||
instance: "Instance",
|
||||
@@ -534,106 +341,6 @@ class FeaturesExtractor:
|
||||
sample.put("instance_features_user", user_features)
|
||||
sample.put("static_lazy_count", sum(constr_lazy))
|
||||
|
||||
def _extract_user_features_instance_old(
|
||||
self,
|
||||
instance: "Instance",
|
||||
features: Features,
|
||||
) -> None:
|
||||
user_features = instance.get_instance_features()
|
||||
if isinstance(user_features, np.ndarray):
|
||||
user_features = user_features.tolist()
|
||||
assert isinstance(user_features, list), (
|
||||
f"Instance features must be a list. "
|
||||
f"Found {type(user_features).__name__} instead."
|
||||
)
|
||||
for v in user_features:
|
||||
assert isinstance(v, numbers.Real), (
|
||||
f"Instance features must be a list of numbers. "
|
||||
f"Found {type(v).__name__} instead."
|
||||
)
|
||||
assert features.constraints is not None
|
||||
assert features.constraints.lazy is not None
|
||||
features.instance = InstanceFeatures(
|
||||
user_features=user_features,
|
||||
lazy_constraint_count=sum(features.constraints.lazy),
|
||||
)
|
||||
|
||||
def _extract_alvarez_2017_old(self, features: Features) -> None:
|
||||
assert features.variables is not None
|
||||
assert features.variables.names is not None
|
||||
|
||||
obj_coeffs = features.variables.obj_coeffs
|
||||
obj_sa_down = features.variables.sa_obj_down
|
||||
obj_sa_up = features.variables.sa_obj_up
|
||||
values = features.variables.values
|
||||
|
||||
pos_obj_coeff_sum = 0.0
|
||||
neg_obj_coeff_sum = 0.0
|
||||
if obj_coeffs is not None:
|
||||
for coeff in obj_coeffs:
|
||||
if coeff > 0:
|
||||
pos_obj_coeff_sum += coeff
|
||||
if coeff < 0:
|
||||
neg_obj_coeff_sum += -coeff
|
||||
|
||||
features.variables.alvarez_2017 = []
|
||||
for i in range(len(features.variables.names)):
|
||||
f: List[float] = []
|
||||
if obj_coeffs is not None:
|
||||
# Feature 1
|
||||
f.append(np.sign(obj_coeffs[i]))
|
||||
|
||||
# Feature 2
|
||||
if pos_obj_coeff_sum > 0:
|
||||
f.append(abs(obj_coeffs[i]) / pos_obj_coeff_sum)
|
||||
else:
|
||||
f.append(0.0)
|
||||
|
||||
# Feature 3
|
||||
if neg_obj_coeff_sum > 0:
|
||||
f.append(abs(obj_coeffs[i]) / neg_obj_coeff_sum)
|
||||
else:
|
||||
f.append(0.0)
|
||||
|
||||
if values is not None:
|
||||
# Feature 37
|
||||
f.append(
|
||||
min(
|
||||
values[i] - np.floor(values[i]),
|
||||
np.ceil(values[i]) - values[i],
|
||||
)
|
||||
)
|
||||
|
||||
if obj_sa_up is not None:
|
||||
assert obj_sa_down is not None
|
||||
assert obj_coeffs is not None
|
||||
|
||||
# Convert inf into large finite numbers
|
||||
sd = max(-1e20, obj_sa_down[i])
|
||||
su = min(1e20, obj_sa_up[i])
|
||||
obj = obj_coeffs[i]
|
||||
|
||||
# Features 44 and 46
|
||||
f.append(np.sign(obj_sa_up[i]))
|
||||
f.append(np.sign(obj_sa_down[i]))
|
||||
|
||||
# Feature 47
|
||||
csign = np.sign(obj)
|
||||
if csign != 0 and ((obj - sd) / csign) > 0.001:
|
||||
f.append(log((obj - sd) / csign))
|
||||
else:
|
||||
f.append(0.0)
|
||||
|
||||
# Feature 48
|
||||
if csign != 0 and ((su - obj) / csign) > 0.001:
|
||||
f.append(log((su - obj) / csign))
|
||||
else:
|
||||
f.append(0.0)
|
||||
|
||||
for v in f:
|
||||
assert isfinite(v), f"non-finite elements detected: {f}"
|
||||
features.variables.alvarez_2017.append(f)
|
||||
|
||||
# Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
|
||||
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
|
||||
def _extract_var_features_AlvLouWeh2017(
|
||||
|
||||
@@ -171,7 +171,6 @@ class LearningSolver:
|
||||
self.extractor.extract_after_load_features(
|
||||
instance, self.internal_solver, sample
|
||||
)
|
||||
features = self.extractor.extract(instance, self.internal_solver)
|
||||
logger.info(
|
||||
"Features (after-load) extracted in %.2f seconds"
|
||||
% (time.time() - initial_time)
|
||||
|
||||
Reference in New Issue
Block a user