mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Benchmark: Add extra columns to CSV
This commit is contained in:
@@ -51,6 +51,11 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
||||
return_constraints=True,
|
||||
)
|
||||
y = self.predict(x)
|
||||
|
||||
self.total_converted = 0
|
||||
self.total_restored = 0
|
||||
self.total_kept = 0
|
||||
self.total_iterations = 0
|
||||
for category in y.keys():
|
||||
for i in range(len(y[category])):
|
||||
if y[category][i][0] == 1:
|
||||
@@ -59,10 +64,17 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
||||
self.original_sense[cid] = s
|
||||
solver.internal_solver.set_constraint_sense(cid, "=")
|
||||
self.converted += [cid]
|
||||
logger.info(f"Converted {len(self.converted)} inequalities")
|
||||
self.total_converted += 1
|
||||
else:
|
||||
self.total_kept += 1
|
||||
logger.info(f"Converted {self.total_converted} inequalities")
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
instance.slacks = solver.internal_solver.get_inequality_slacks()
|
||||
results["ConvertTight: Kept"] = self.total_kept
|
||||
results["ConvertTight: Converted"] = self.total_converted
|
||||
results["ConvertTight: Restored"] = self.total_restored
|
||||
results["ConvertTight: Iterations"] = self.total_iterations
|
||||
|
||||
def fit(self, training_instances):
|
||||
logger.debug("Extracting x and y...")
|
||||
@@ -173,7 +185,9 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
||||
for cid in restored:
|
||||
self.converted.remove(cid)
|
||||
if len(restored) > 0:
|
||||
self.total_restored += len(restored)
|
||||
logger.info(f"Restored {len(restored)} inequalities")
|
||||
self.total_iterations += 1
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
@@ -57,6 +57,11 @@ class DropRedundantInequalitiesStep(Component):
|
||||
return_constraints=True,
|
||||
)
|
||||
y = self.predict(x)
|
||||
|
||||
self.total_dropped = 0
|
||||
self.total_restored = 0
|
||||
self.total_kept = 0
|
||||
self.total_iterations = 0
|
||||
for category in y.keys():
|
||||
for i in range(len(y[category])):
|
||||
if y[category][i][0] == 1:
|
||||
@@ -66,10 +71,17 @@ class DropRedundantInequalitiesStep(Component):
|
||||
obj=solver.internal_solver.extract_constraint(cid),
|
||||
)
|
||||
self.pool += [c]
|
||||
logger.info("Extracted %d predicted constraints" % len(self.pool))
|
||||
self.total_dropped += 1
|
||||
else:
|
||||
self.total_kept += 1
|
||||
logger.info(f"Extracted {self.total_dropped} predicted constraints")
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
instance.slacks = solver.internal_solver.get_inequality_slacks()
|
||||
results["DropRedundant: Kept"] = self.total_kept
|
||||
results["DropRedundant: Dropped"] = self.total_dropped
|
||||
results["DropRedundant: Restored"] = self.total_restored
|
||||
results["DropRedundant: Iterations"] = self.total_iterations
|
||||
|
||||
def fit(self, training_instances):
|
||||
logger.debug("Extracting x and y...")
|
||||
@@ -180,10 +192,12 @@ class DropRedundantInequalitiesStep(Component):
|
||||
self.pool.remove(c)
|
||||
solver.internal_solver.add_constraint(c.obj)
|
||||
if len(constraints_to_add) > 0:
|
||||
self.total_restored += len(constraints_to_add)
|
||||
logger.info(
|
||||
"%8d constraints %8d in the pool"
|
||||
% (len(constraints_to_add), len(self.pool))
|
||||
)
|
||||
self.total_iterations += 1
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
@@ -115,7 +115,7 @@ def test_drop_redundant():
|
||||
)
|
||||
|
||||
# LearningSolver calls after_solve
|
||||
component.after_solve(solver, instance, None, None)
|
||||
component.after_solve(solver, instance, None, {})
|
||||
|
||||
# Should query slack for all inequalities
|
||||
internal.get_inequality_slacks.assert_called_once()
|
||||
|
||||
Reference in New Issue
Block a user