Benchmark: Add extra columns to CSV

This commit is contained in:
2021-01-12 11:22:42 -06:00
parent f77d1d5de9
commit c9ad7a3f56
5 changed files with 60 additions and 51 deletions

View File

@@ -51,6 +51,11 @@ class ConvertTightIneqsIntoEqsStep(Component):
return_constraints=True,
)
y = self.predict(x)
self.total_converted = 0
self.total_restored = 0
self.total_kept = 0
self.total_iterations = 0
for category in y.keys():
for i in range(len(y[category])):
if y[category][i][0] == 1:
@@ -59,10 +64,17 @@ class ConvertTightIneqsIntoEqsStep(Component):
self.original_sense[cid] = s
solver.internal_solver.set_constraint_sense(cid, "=")
self.converted += [cid]
logger.info(f"Converted {len(self.converted)} inequalities")
self.total_converted += 1
else:
self.total_kept += 1
logger.info(f"Converted {self.total_converted} inequalities")
def after_solve(self, solver, instance, model, results):
instance.slacks = solver.internal_solver.get_inequality_slacks()
results["ConvertTight: Kept"] = self.total_kept
results["ConvertTight: Converted"] = self.total_converted
results["ConvertTight: Restored"] = self.total_restored
results["ConvertTight: Iterations"] = self.total_iterations
def fit(self, training_instances):
logger.debug("Extracting x and y...")
@@ -173,7 +185,9 @@ class ConvertTightIneqsIntoEqsStep(Component):
for cid in restored:
self.converted.remove(cid)
if len(restored) > 0:
self.total_restored += len(restored)
logger.info(f"Restored {len(restored)} inequalities")
self.total_iterations += 1
return True
else:
return False

View File

@@ -57,6 +57,11 @@ class DropRedundantInequalitiesStep(Component):
return_constraints=True,
)
y = self.predict(x)
self.total_dropped = 0
self.total_restored = 0
self.total_kept = 0
self.total_iterations = 0
for category in y.keys():
for i in range(len(y[category])):
if y[category][i][0] == 1:
@@ -66,10 +71,17 @@ class DropRedundantInequalitiesStep(Component):
obj=solver.internal_solver.extract_constraint(cid),
)
self.pool += [c]
logger.info("Extracted %d predicted constraints" % len(self.pool))
self.total_dropped += 1
else:
self.total_kept += 1
logger.info(f"Extracted {self.total_dropped} predicted constraints")
def after_solve(self, solver, instance, model, results):
instance.slacks = solver.internal_solver.get_inequality_slacks()
results["DropRedundant: Kept"] = self.total_kept
results["DropRedundant: Dropped"] = self.total_dropped
results["DropRedundant: Restored"] = self.total_restored
results["DropRedundant: Iterations"] = self.total_iterations
def fit(self, training_instances):
logger.debug("Extracting x and y...")
@@ -180,10 +192,12 @@ class DropRedundantInequalitiesStep(Component):
self.pool.remove(c)
solver.internal_solver.add_constraint(c.obj)
if len(constraints_to_add) > 0:
self.total_restored += len(constraints_to_add)
logger.info(
"%8d constraints %8d in the pool"
% (len(constraints_to_add), len(self.pool))
)
self.total_iterations += 1
return True
else:
return False

View File

@@ -115,7 +115,7 @@ def test_drop_redundant():
)
# LearningSolver calls after_solve
component.after_solve(solver, instance, None, None)
component.after_solve(solver, instance, None, {})
# Should query slack for all inequalities
internal.get_inequality_slacks.assert_called_once()