mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Refactor StaticLazy
This commit is contained in:
@@ -52,26 +52,35 @@ class StaticLazyConstraintsComponent(Component):
|
||||
self.n_iterations: int = 0
|
||||
|
||||
@overrides
|
||||
def before_solve_mip_old(
|
||||
def after_solve_mip(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
instance: "Instance",
|
||||
model: Any,
|
||||
stats: LearningSolveStats,
|
||||
features: Features,
|
||||
training_data: TrainingSample,
|
||||
sample: Sample,
|
||||
) -> None:
|
||||
sample.after_mip.extra["lazy_enforced"] = self.enforced_cids
|
||||
stats["LazyStatic: Restored"] = self.n_restored
|
||||
stats["LazyStatic: Iterations"] = self.n_iterations
|
||||
|
||||
@overrides
|
||||
def before_solve_mip(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
instance: "Instance",
|
||||
model: Any,
|
||||
stats: LearningSolveStats,
|
||||
sample: Sample,
|
||||
) -> None:
|
||||
assert solver.internal_solver is not None
|
||||
assert features.instance is not None
|
||||
assert features.constraints is not None
|
||||
|
||||
logger.info("Predicting violated (static) lazy constraints...")
|
||||
if features.instance.lazy_constraint_count == 0:
|
||||
if sample.after_load.instance.lazy_constraint_count == 0:
|
||||
logger.info("Instance does not have static lazy constraints. Skipping.")
|
||||
self.enforced_cids = set(self.sample_predict(instance, training_data))
|
||||
self.enforced_cids = set(self.sample_predict(sample))
|
||||
logger.info("Moving lazy constraints to the pool...")
|
||||
self.pool = {}
|
||||
for (cid, cdict) in features.constraints.items():
|
||||
for (cid, cdict) in sample.after_load.constraints.items():
|
||||
if cdict.lazy and cid not in self.enforced_cids:
|
||||
self.pool[cid] = cdict
|
||||
solver.internal_solver.remove_constraint(cid)
|
||||
@@ -86,18 +95,17 @@ class StaticLazyConstraintsComponent(Component):
|
||||
self.n_iterations = 0
|
||||
|
||||
@overrides
|
||||
def after_solve_mip_old(
|
||||
def fit_xy(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
instance: "Instance",
|
||||
model: Any,
|
||||
stats: LearningSolveStats,
|
||||
features: Features,
|
||||
training_data: TrainingSample,
|
||||
x: Dict[Hashable, np.ndarray],
|
||||
y: Dict[Hashable, np.ndarray],
|
||||
) -> None:
|
||||
training_data.lazy_enforced = self.enforced_cids
|
||||
stats["LazyStatic: Restored"] = self.n_restored
|
||||
stats["LazyStatic: Iterations"] = self.n_iterations
|
||||
for c in y.keys():
|
||||
assert c in x
|
||||
self.classifiers[c] = self.classifier_prototype.clone()
|
||||
self.thresholds[c] = self.threshold_prototype.clone()
|
||||
self.classifiers[c].fit(x[c], y[c])
|
||||
self.thresholds[c].fit(self.classifiers[c], x[c], y[c])
|
||||
|
||||
@overrides
|
||||
def iteration_cb(
|
||||
@@ -120,6 +128,30 @@ class StaticLazyConstraintsComponent(Component):
|
||||
) -> None:
|
||||
self._check_and_add(solver)
|
||||
|
||||
def sample_predict(self, sample: Sample) -> List[Hashable]:
|
||||
x, y, cids = self._sample_xy_with_cids(sample)
|
||||
enforced_cids: List[Hashable] = []
|
||||
for category in x.keys():
|
||||
if category not in self.classifiers:
|
||||
continue
|
||||
npx = np.array(x[category])
|
||||
proba = self.classifiers[category].predict_proba(npx)
|
||||
thr = self.thresholds[category].predict(npx)
|
||||
pred = list(proba[:, 1] > thr[1])
|
||||
for (i, is_selected) in enumerate(pred):
|
||||
if is_selected:
|
||||
enforced_cids += [cids[category][i]]
|
||||
return enforced_cids
|
||||
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
_: Optional[Instance],
|
||||
sample: Sample,
|
||||
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
|
||||
x, y, _ = self._sample_xy_with_cids(sample)
|
||||
return x, y
|
||||
|
||||
def _check_and_add(self, solver: "LearningSolver") -> bool:
|
||||
assert solver.internal_solver is not None
|
||||
logger.info("Finding violated lazy constraints...")
|
||||
@@ -145,69 +177,16 @@ class StaticLazyConstraintsComponent(Component):
|
||||
else:
|
||||
return False
|
||||
|
||||
def sample_predict(
|
||||
self,
|
||||
instance: "Instance",
|
||||
sample: TrainingSample,
|
||||
) -> List[Hashable]:
|
||||
assert instance.features.constraints is not None
|
||||
|
||||
x, y = self.sample_xy_old(instance, sample)
|
||||
category_to_cids: Dict[Hashable, List[Hashable]] = {}
|
||||
for (cid, cfeatures) in instance.features.constraints.items():
|
||||
if cfeatures.category is None:
|
||||
continue
|
||||
category = cfeatures.category
|
||||
if category not in category_to_cids:
|
||||
category_to_cids[category] = []
|
||||
category_to_cids[category] += [cid]
|
||||
enforced_cids: List[Hashable] = []
|
||||
for category in x.keys():
|
||||
if category not in self.classifiers:
|
||||
continue
|
||||
npx = np.array(x[category])
|
||||
proba = self.classifiers[category].predict_proba(npx)
|
||||
thr = self.thresholds[category].predict(npx)
|
||||
pred = list(proba[:, 1] > thr[1])
|
||||
for (i, is_selected) in enumerate(pred):
|
||||
if is_selected:
|
||||
enforced_cids += [category_to_cids[category][i]]
|
||||
return enforced_cids
|
||||
|
||||
@overrides
|
||||
def sample_xy_old(
|
||||
self,
|
||||
instance: "Instance",
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
|
||||
assert instance.features.constraints is not None
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
for (cid, cfeatures) in instance.features.constraints.items():
|
||||
if not cfeatures.lazy:
|
||||
continue
|
||||
category = cfeatures.category
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
y[category] = []
|
||||
x[category] += [cfeatures.user_features]
|
||||
if sample.lazy_enforced is not None:
|
||||
if cid in sample.lazy_enforced:
|
||||
y[category] += [[False, True]]
|
||||
else:
|
||||
y[category] += [[True, False]]
|
||||
return x, y
|
||||
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
_: Optional[Instance],
|
||||
sample: Sample,
|
||||
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
def _sample_xy_with_cids(
|
||||
self, sample: Sample
|
||||
) -> Tuple[
|
||||
Dict[Hashable, List[List[float]]],
|
||||
Dict[Hashable, List[List[float]]],
|
||||
Dict[Hashable, List[str]],
|
||||
]:
|
||||
x: Dict[Hashable, List[List[float]]] = {}
|
||||
y: Dict[Hashable, List[List[float]]] = {}
|
||||
cids: Dict[Hashable, List[str]] = {}
|
||||
assert sample.after_load is not None
|
||||
assert sample.after_load.constraints is not None
|
||||
for (cid, constr) in sample.after_load.constraints.items():
|
||||
@@ -220,6 +199,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
y[category] = []
|
||||
cids[category] = []
|
||||
|
||||
# Features
|
||||
sf = sample.after_load
|
||||
@@ -231,25 +211,16 @@ class StaticLazyConstraintsComponent(Component):
|
||||
assert sf.constraints[cid] is not None
|
||||
features.extend(sf.constraints[cid].to_list())
|
||||
x[category].append(features)
|
||||
cids[category].append(cid)
|
||||
|
||||
# Labels
|
||||
if sample.after_mip is not None:
|
||||
assert sample.after_mip.extra is not None
|
||||
if (
|
||||
(sample.after_mip is not None)
|
||||
and (sample.after_mip.extra is not None)
|
||||
and ("lazy_enforced" in sample.after_mip.extra)
|
||||
):
|
||||
if cid in sample.after_mip.extra["lazy_enforced"]:
|
||||
y[category] += [[False, True]]
|
||||
else:
|
||||
y[category] += [[True, False]]
|
||||
return x, y
|
||||
|
||||
@overrides
|
||||
def fit_xy(
|
||||
self,
|
||||
x: Dict[Hashable, np.ndarray],
|
||||
y: Dict[Hashable, np.ndarray],
|
||||
) -> None:
|
||||
for c in y.keys():
|
||||
assert c in x
|
||||
self.classifiers[c] = self.classifier_prototype.clone()
|
||||
self.thresholds[c] = self.threshold_prototype.clone()
|
||||
self.classifiers[c].fit(x[c], y[c])
|
||||
self.thresholds[c].fit(self.classifiers[c], x[c], y[c])
|
||||
return x, y, cids
|
||||
|
||||
Reference in New Issue
Block a user