Refactor StaticLazy

This commit is contained in:
2021-04-12 10:05:17 -05:00
parent e6672a45a0
commit cb62345acf
2 changed files with 91 additions and 169 deletions

View File

@@ -12,7 +12,6 @@ from miplearn.classifiers import Classifier
from miplearn.classifiers.threshold import Threshold, MinProbabilityThreshold
from miplearn.components.static_lazy import StaticLazyConstraintsComponent
from miplearn.features import (
TrainingSample,
InstanceFeatures,
Features,
Constraint,
@@ -30,13 +29,16 @@ from miplearn.types import (
def sample() -> Sample:
sample = Sample(
after_load=Features(
instance=InstanceFeatures(
lazy_constraint_count=4,
),
constraints={
"c1": Constraint(category="type-a", lazy=True),
"c2": Constraint(category="type-a", lazy=True),
"c3": Constraint(category="type-a", lazy=True),
"c4": Constraint(category="type-b", lazy=True),
"c5": Constraint(category="type-b", lazy=False),
}
},
),
after_lp=Features(
instance=InstanceFeatures(),
@@ -71,61 +73,14 @@ def sample() -> Sample:
@pytest.fixture
def instance_old(features: Features) -> Instance:
def instance(sample: Sample) -> Instance:
instance = Mock(spec=Instance)
instance.features = features
instance.samples = [sample]
instance.has_static_lazy_constraints = Mock(return_value=True)
return instance
@pytest.fixture
def sample_old() -> TrainingSample:
return TrainingSample(
lazy_enforced={"c1", "c2", "c4"},
)
@pytest.fixture
def features() -> Features:
return Features(
instance=InstanceFeatures(
user_features=[0],
lazy_constraint_count=4,
),
constraints={
"c1": Constraint(
category="type-a",
user_features=[1.0, 1.0],
lazy=True,
),
"c2": Constraint(
category="type-a",
user_features=[1.0, 2.0],
lazy=True,
),
"c3": Constraint(
category="type-a",
user_features=[1.0, 3.0],
lazy=True,
),
"c4": Constraint(
category="type-b",
user_features=[1.0, 4.0, 0.0],
lazy=True,
),
"c5": Constraint(
category="type-b",
user_features=[1.0, 5.0, 0.0],
lazy=False,
),
},
)
def test_usage_with_solver(instance_old: Instance) -> None:
assert instance_old.features is not None
assert instance_old.features.constraints is not None
def test_usage_with_solver(instance: Instance) -> None:
solver = Mock(spec=LearningSolver)
solver.use_lazy_cb = False
solver.gap_tolerance = 1e-4
@@ -157,17 +112,17 @@ def test_usage_with_solver(instance_old: Instance) -> None:
)
)
sample_old: TrainingSample = TrainingSample()
stats: LearningSolveStats = {}
sample = instance.samples[0]
del sample.after_mip.extra["lazy_enforced"]
# LearningSolver calls before_solve_mip
component.before_solve_mip_old(
component.before_solve_mip(
solver=solver,
instance=instance_old,
instance=instance,
model=None,
stats=stats,
features=instance_old.features,
training_data=sample_old,
sample=sample,
)
# Should ask ML to predict whether each lazy constraint should be enforced
@@ -179,19 +134,19 @@ def test_usage_with_solver(instance_old: Instance) -> None:
internal.remove_constraint.assert_has_calls([call("c3")])
# LearningSolver calls after_iteration (first time)
should_repeat = component.iteration_cb(solver, instance_old, None)
should_repeat = component.iteration_cb(solver, instance, None)
assert should_repeat
# Should ask internal solver to verify if constraints in the pool are
# satisfied and add the ones that are not
c3 = instance_old.features.constraints["c3"]
c3 = sample.after_load.constraints["c3"]
internal.is_constraint_satisfied.assert_called_once_with(c3, tol=1.0)
internal.is_constraint_satisfied.reset_mock()
internal.add_constraint.assert_called_once_with(c3, name="c3")
internal.add_constraint.reset_mock()
# LearningSolver calls after_iteration (second time)
should_repeat = component.iteration_cb(solver, instance_old, None)
should_repeat = component.iteration_cb(solver, instance, None)
assert not should_repeat
# The lazy constraint pool should be empty by now, so no calls should be made
@@ -199,18 +154,17 @@ def test_usage_with_solver(instance_old: Instance) -> None:
internal.add_constraint.assert_not_called()
# LearningSolver calls after_solve_mip
component.after_solve_mip_old(
component.after_solve_mip(
solver=solver,
instance=instance_old,
instance=instance,
model=None,
stats=stats,
features=instance_old.features,
training_data=sample_old,
sample=sample,
)
# Should update training sample
assert sample_old.lazy_enforced == {"c1", "c2", "c3", "c4"}
assert sample.after_mip.extra["lazy_enforced"] == {"c1", "c2", "c3", "c4"}
#
# Should update stats
assert stats["LazyStatic: Removed"] == 1
assert stats["LazyStatic: Kept"] == 3
@@ -218,10 +172,7 @@ def test_usage_with_solver(instance_old: Instance) -> None:
assert stats["LazyStatic: Iterations"] == 1
def test_sample_predict(
instance_old: Instance,
sample_old: TrainingSample,
) -> None:
def test_sample_predict(sample: Sample) -> None:
comp = StaticLazyConstraintsComponent()
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
comp.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
@@ -239,7 +190,7 @@ def test_sample_predict(
[0.0, 1.0], # c4
]
)
pred = comp.sample_predict(instance_old, sample_old)
pred = comp.sample_predict(sample)
assert pred == ["c1", "c2", "c4"]