mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Merge branch 'feature/new-py-api' into feature/docs
This commit is contained in:
@@ -2,6 +2,7 @@
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Dict, Optional
|
||||
|
||||
import numpy as np
|
||||
@@ -13,6 +14,13 @@ from scipy.stats.distributions import rv_frozen
|
||||
from miplearn.instance.base import Instance
|
||||
|
||||
|
||||
@dataclass
|
||||
class MultiKnapsackData:
|
||||
prices: np.ndarray
|
||||
capacities: np.ndarray
|
||||
weights: np.ndarray
|
||||
|
||||
|
||||
class MultiKnapsackInstance(Instance):
|
||||
"""Representation of the Multidimensional 0-1 Knapsack Problem.
|
||||
|
||||
|
||||
@@ -2,7 +2,8 @@
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import List, Dict
|
||||
from dataclasses import dataclass
|
||||
from typing import List
|
||||
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
@@ -15,6 +16,12 @@ from scipy.stats.distributions import rv_frozen
|
||||
from miplearn.instance.base import Instance
|
||||
|
||||
|
||||
@dataclass
|
||||
class MaxWeightStableSetData:
|
||||
graph: Graph
|
||||
weights: np.ndarray
|
||||
|
||||
|
||||
class MaxWeightStableSetInstance(Instance):
|
||||
"""An instance of the Maximum-Weight Stable Set Problem.
|
||||
|
||||
@@ -87,16 +94,30 @@ class MaxWeightStableSetGenerator:
|
||||
if fix_graph:
|
||||
self.graph = self._generate_graph()
|
||||
|
||||
def generate(self, n_samples: int) -> List[MaxWeightStableSetInstance]:
|
||||
def _sample() -> MaxWeightStableSetInstance:
|
||||
def generate(self, n_samples: int) -> List[MaxWeightStableSetData]:
|
||||
def _sample() -> MaxWeightStableSetData:
|
||||
if self.graph is not None:
|
||||
graph = self.graph
|
||||
else:
|
||||
graph = self._generate_graph()
|
||||
weights = self.w.rvs(graph.number_of_nodes())
|
||||
return MaxWeightStableSetInstance(graph, weights)
|
||||
return MaxWeightStableSetData(graph, weights)
|
||||
|
||||
return [_sample() for _ in range(n_samples)]
|
||||
|
||||
def _generate_graph(self) -> Graph:
|
||||
return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.p.rvs())
|
||||
|
||||
|
||||
def build_stab_model(data: MaxWeightStableSetData) -> pe.ConcreteModel:
|
||||
model = pe.ConcreteModel()
|
||||
nodes = list(data.graph.nodes)
|
||||
model.x = pe.Var(nodes, domain=pe.Binary)
|
||||
model.OBJ = pe.Objective(
|
||||
expr=sum(model.x[v] * data.weights[v] for v in nodes),
|
||||
sense=pe.maximize,
|
||||
)
|
||||
model.clique_eqs = pe.ConstraintList()
|
||||
for clique in nx.find_cliques(data.graph):
|
||||
model.clique_eqs.add(sum(model.x[v] for v in clique) <= 1)
|
||||
return model
|
||||
|
||||
@@ -1,7 +1,9 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
from typing import List, Tuple, FrozenSet, Any, Optional, Dict
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Tuple, Any, Optional, Dict
|
||||
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
@@ -17,6 +19,12 @@ from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||
from miplearn.types import ConstraintName
|
||||
|
||||
|
||||
@dataclass
|
||||
class TravelingSalesmanData:
|
||||
n_cities: int
|
||||
distances: np.ndarray
|
||||
|
||||
|
||||
class TravelingSalesmanInstance(Instance):
|
||||
"""An instance ot the Traveling Salesman Problem.
|
||||
|
||||
@@ -62,14 +70,15 @@ class TravelingSalesmanInstance(Instance):
|
||||
self,
|
||||
solver: InternalSolver,
|
||||
model: Any,
|
||||
) -> List[ConstraintName]:
|
||||
) -> Dict[ConstraintName, List]:
|
||||
selected_edges = [e for e in self.edges if model.x[e].value > 0.5]
|
||||
graph = nx.Graph()
|
||||
graph.add_edges_from(selected_edges)
|
||||
violations = []
|
||||
violations = {}
|
||||
for c in list(nx.connected_components(graph)):
|
||||
if len(c) < self.n_cities:
|
||||
violations.append(",".join(map(str, c)).encode())
|
||||
cname = ("st[" + ",".join(map(str, c)) + "]").encode()
|
||||
violations[cname] = list(c)
|
||||
return violations
|
||||
|
||||
@overrides
|
||||
@@ -77,10 +86,9 @@ class TravelingSalesmanInstance(Instance):
|
||||
self,
|
||||
solver: InternalSolver,
|
||||
model: Any,
|
||||
violation: ConstraintName,
|
||||
component: List,
|
||||
) -> None:
|
||||
assert isinstance(solver, BasePyomoSolver)
|
||||
component = [int(v) for v in violation.decode().split(",")]
|
||||
cut_edges = [
|
||||
e
|
||||
for e in self.edges
|
||||
@@ -156,8 +164,8 @@ class TravelingSalesmanGenerator:
|
||||
self.fixed_n = None
|
||||
self.fixed_cities = None
|
||||
|
||||
def generate(self, n_samples: int) -> List[TravelingSalesmanInstance]:
|
||||
def _sample() -> TravelingSalesmanInstance:
|
||||
def generate(self, n_samples: int) -> List[TravelingSalesmanData]:
|
||||
def _sample() -> TravelingSalesmanData:
|
||||
if self.fixed_cities is not None:
|
||||
assert self.fixed_n is not None
|
||||
n, cities = self.fixed_n, self.fixed_cities
|
||||
@@ -167,7 +175,7 @@ class TravelingSalesmanGenerator:
|
||||
distances = np.tril(distances) + np.triu(distances.T, 1)
|
||||
if self.round:
|
||||
distances = distances.round()
|
||||
return TravelingSalesmanInstance(n, distances)
|
||||
return TravelingSalesmanData(n, distances)
|
||||
|
||||
return [_sample() for _ in range(n_samples)]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user