mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Implement AdaptiveSolver; reorganize imports
This commit is contained in:
@@ -12,13 +12,18 @@ Options:
|
||||
"""
|
||||
from docopt import docopt
|
||||
import importlib, pathlib
|
||||
from miplearn import LearningSolver, BenchmarkRunner
|
||||
from miplearn.warmstart import WarmStartComponent
|
||||
from miplearn.branching import BranchPriorityComponent
|
||||
from miplearn import (LearningSolver,
|
||||
BenchmarkRunner,
|
||||
WarmStartComponent,
|
||||
BranchPriorityComponent,
|
||||
)
|
||||
from numpy import median
|
||||
import pyomo.environ as pe
|
||||
import pickle
|
||||
|
||||
import logging
|
||||
logging.getLogger('pyomo.core').setLevel(logging.ERROR)
|
||||
|
||||
args = docopt(__doc__)
|
||||
basepath = args["<challenge>"]
|
||||
pathlib.Path(basepath).mkdir(parents=True, exist_ok=True)
|
||||
@@ -60,7 +65,7 @@ def train():
|
||||
internal_solver_factory=train_solver_factory,
|
||||
components={
|
||||
"warm-start": WarmStartComponent(),
|
||||
"branch-priority": BranchPriorityComponent(),
|
||||
#"branch-priority": BranchPriorityComponent(),
|
||||
},
|
||||
)
|
||||
solver.parallel_solve(train_instances, n_jobs=10)
|
||||
@@ -89,7 +94,7 @@ def test_ml():
|
||||
internal_solver_factory=test_solver_factory,
|
||||
components={
|
||||
"warm-start": WarmStartComponent(),
|
||||
"branch-priority": BranchPriorityComponent(),
|
||||
#"branch-priority": BranchPriorityComponent(),
|
||||
},
|
||||
),
|
||||
"ml-heuristic": LearningSolver(
|
||||
@@ -97,7 +102,7 @@ def test_ml():
|
||||
mode="heuristic",
|
||||
components={
|
||||
"warm-start": WarmStartComponent(),
|
||||
"branch-priority": BranchPriorityComponent(),
|
||||
#"branch-priority": BranchPriorityComponent(),
|
||||
},
|
||||
),
|
||||
}
|
||||
|
||||
@@ -6,7 +6,9 @@
|
||||
from .components.component import Component
|
||||
from .components.warmstart import (WarmStartComponent,
|
||||
KnnWarmStartPredictor,
|
||||
LogisticWarmStartPredictor)
|
||||
LogisticWarmStartPredictor,
|
||||
AdaptivePredictor,
|
||||
)
|
||||
from .components.branching import BranchPriorityComponent
|
||||
from .extractors import UserFeaturesExtractor, SolutionExtractor
|
||||
from .benchmark import BenchmarkRunner
|
||||
|
||||
@@ -26,12 +26,16 @@ def test_warm_start_save_load():
|
||||
comp = solver.components["warm-start"]
|
||||
assert comp.x_train["default"].shape == (8, 6)
|
||||
assert comp.y_train["default"].shape == (8, 2)
|
||||
assert "default" in comp.predictors.keys()
|
||||
assert ("default", 0) in comp.predictors.keys()
|
||||
assert ("default", 1) in comp.predictors.keys()
|
||||
solver.save_state(state_file.name)
|
||||
|
||||
solver.solve(_get_instances()[0])
|
||||
|
||||
solver = LearningSolver(components={"warm-start": WarmStartComponent()})
|
||||
solver.load_state(state_file.name)
|
||||
comp = solver.components["warm-start"]
|
||||
assert comp.x_train["default"].shape == (8, 6)
|
||||
assert comp.y_train["default"].shape == (8, 2)
|
||||
assert "default" in comp.predictors.keys()
|
||||
assert ("default", 0) in comp.predictors.keys()
|
||||
assert ("default", 1) in comp.predictors.keys()
|
||||
|
||||
@@ -12,12 +12,250 @@ from sklearn.pipeline import make_pipeline
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.model_selection import cross_val_score
|
||||
from sklearn.metrics import roc_curve
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from tqdm.auto import tqdm
|
||||
import pyomo.environ as pe
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AdaptivePredictor:
|
||||
def __init__(self,
|
||||
predictor=None,
|
||||
min_samples_predict=1,
|
||||
min_samples_cv=100,
|
||||
thr_fix=0.999,
|
||||
thr_alpha=0.50,
|
||||
thr_balance=1.0,
|
||||
):
|
||||
self.min_samples_predict = min_samples_predict
|
||||
self.min_samples_cv = min_samples_cv
|
||||
self.thr_fix = thr_fix
|
||||
self.thr_alpha = thr_alpha
|
||||
self.thr_balance = thr_balance
|
||||
self.predictor_factory = predictor
|
||||
|
||||
def fit(self, x_train, y_train):
|
||||
n_samples = x_train.shape[0]
|
||||
|
||||
# If number of samples is too small, don't predict anything.
|
||||
if n_samples < self.min_samples_predict:
|
||||
logger.debug(" Too few samples (%d); always predicting false" % n_samples)
|
||||
self.predictor = 0
|
||||
return
|
||||
|
||||
# If vast majority of observations are false, always return false.
|
||||
y_train_avg = np.average(y_train)
|
||||
if y_train_avg <= 1.0 - self.thr_fix:
|
||||
logger.debug(" Most samples are negative (%.3f); always returning false" % y_train_avg)
|
||||
self.predictor = 0
|
||||
return
|
||||
|
||||
# If vast majority of observations are true, always return true.
|
||||
if y_train_avg >= self.thr_fix:
|
||||
logger.debug(" Most samples are positive (%.3f); always returning true" % y_train_avg)
|
||||
self.predictor = 1
|
||||
return
|
||||
|
||||
# If classes are too unbalanced, don't predict anything.
|
||||
if y_train_avg < (1 - self.thr_balance) or y_train_avg > self.thr_balance:
|
||||
logger.debug(" Classes are too unbalanced (%.3f); always returning false" % y_train_avg)
|
||||
self.predictor = 0
|
||||
return
|
||||
|
||||
# Select ML model if none is provided
|
||||
if self.predictor_factory is None:
|
||||
if n_samples < 30:
|
||||
self.predictor_factory = KNeighborsClassifier(n_neighbors=n_samples)
|
||||
else:
|
||||
self.predictor_factory = make_pipeline(StandardScaler(), LogisticRegression())
|
||||
|
||||
# Create predictor
|
||||
if callable(self.predictor_factory):
|
||||
pred = self.predictor_factory()
|
||||
else:
|
||||
pred = deepcopy(self.predictor_factory)
|
||||
|
||||
# Skip cross-validation if number of samples is too small
|
||||
if n_samples < self.min_samples_cv:
|
||||
logger.debug(" Too few samples (%d); skipping cross validation" % n_samples)
|
||||
self.predictor = pred
|
||||
self.predictor.fit(x_train, y_train)
|
||||
return
|
||||
|
||||
# Calculate cross-validation score
|
||||
cv_score = np.mean(cross_val_score(pred, x_train, y_train, cv=5))
|
||||
dummy_score = max(y_train_avg, 1 - y_train_avg)
|
||||
cv_thr = 1. * self.thr_alpha + dummy_score * (1 - self.thr_alpha)
|
||||
|
||||
# If cross-validation score is too low, don't predict anything.
|
||||
if cv_score < cv_thr:
|
||||
logger.debug(" Score is too low (%.3f < %.3f); always returning false" % (cv_score, cv_thr))
|
||||
self.predictor = 0
|
||||
else:
|
||||
logger.debug(" Score is acceptable (%.3f > %.3f); training classifier" % (cv_score, cv_thr))
|
||||
self.predictor = pred
|
||||
self.predictor.fit(x_train, y_train)
|
||||
|
||||
def predict_proba(self, x_test):
|
||||
if isinstance(self.predictor, int):
|
||||
y_pred = np.zeros((x_test.shape[0], 2))
|
||||
y_pred[:, self.predictor] = 1.0
|
||||
return y_pred
|
||||
else:
|
||||
return self.predictor.predict_proba(x_test)
|
||||
|
||||
|
||||
class WarmStartComponent(Component):
|
||||
def __init__(self,
|
||||
predictor=AdaptivePredictor(),
|
||||
mode="exact",
|
||||
max_fpr=[0.01, 0.01],
|
||||
min_threshold=[0.75, 0.75],
|
||||
dynamic_thresholds=False,
|
||||
):
|
||||
self.mode = mode
|
||||
self.x_train = {}
|
||||
self.y_train = {}
|
||||
self.predictors = {}
|
||||
self.is_warm_start_available = False
|
||||
self.max_fpr = max_fpr
|
||||
self.min_threshold = min_threshold
|
||||
self.thresholds = {}
|
||||
self.predictor_factory = predictor
|
||||
self.dynamic_thresholds = dynamic_thresholds
|
||||
|
||||
|
||||
def before_solve(self, solver, instance, model):
|
||||
# # Solve linear relaxation
|
||||
# lr_solver = pe.SolverFactory("gurobi")
|
||||
# lr_solver.options["threads"] = 4
|
||||
# lr_solver.options["relax_integrality"] = 1
|
||||
# lr_solver.solve(model, tee=solver.tee)
|
||||
|
||||
# Build x_test
|
||||
x_test = CombinedExtractor([UserFeaturesExtractor(),
|
||||
SolutionExtractor(),
|
||||
]).extract([instance], [model])
|
||||
|
||||
# Update self.x_train
|
||||
self.x_train = Extractor.merge([self.x_train, x_test],
|
||||
vertical=True)
|
||||
|
||||
# Predict solutions
|
||||
count_total, count_fixed = 0, 0
|
||||
var_split = Extractor.split_variables(instance, model)
|
||||
for category in var_split.keys():
|
||||
var_index_pairs = var_split[category]
|
||||
|
||||
# Clear current values
|
||||
for i in range(len(var_index_pairs)):
|
||||
var, index = var_index_pairs[i]
|
||||
var[index].value = None
|
||||
|
||||
# Make predictions
|
||||
for label in [0,1]:
|
||||
if (category, label) not in self.predictors.keys():
|
||||
continue
|
||||
ws = self.predictors[category, label].predict_proba(x_test[category])
|
||||
assert ws.shape == (len(var_index_pairs), 2)
|
||||
for i in range(len(var_index_pairs)):
|
||||
count_total += 1
|
||||
var, index = var_index_pairs[i]
|
||||
logger.debug("%s[%s] ws=%.6f threshold=%.6f" % (var, index, ws[i, 1], self.thresholds[category, label]))
|
||||
if ws[i, 1] > self.thresholds[category, label]:
|
||||
logger.debug("Setting %s[%s] to %d" % (var, index, label))
|
||||
count_fixed += 1
|
||||
if self.mode == "heuristic":
|
||||
var[index].fix(label)
|
||||
if solver.is_persistent:
|
||||
solver.internal_solver.update_var(var[index])
|
||||
else:
|
||||
var[index].value = label
|
||||
self.is_warm_start_available = True
|
||||
|
||||
# Clear current values
|
||||
for i in range(len(var_index_pairs)):
|
||||
var, index = var_index_pairs[i]
|
||||
if var[index].value is None:
|
||||
logger.debug("Variable %s[%s] not set" % (var, index))
|
||||
else:
|
||||
logger.debug("Varible %s[%s] set to %.2f" % (var, index, var[index].value))
|
||||
|
||||
|
||||
logger.info("Setting values for %d variables (out of %d)" % (count_fixed, count_total // 2))
|
||||
|
||||
|
||||
def after_solve(self, solver, instance, model):
|
||||
y_test = SolutionExtractor().extract([instance], [model])
|
||||
self.y_train = Extractor.merge([self.y_train, y_test], vertical=True)
|
||||
|
||||
def fit(self, solver, n_jobs=1):
|
||||
for category in tqdm(self.x_train.keys(), desc="Fit (warm start)"):
|
||||
x_train = self.x_train[category]
|
||||
y_train = self.y_train[category]
|
||||
for label in [0, 1]:
|
||||
logger.debug("Fitting predictors[%s, %s]:" % (category, label))
|
||||
|
||||
if callable(self.predictor_factory):
|
||||
pred = self.predictor_factory(category, label)
|
||||
else:
|
||||
pred = deepcopy(self.predictor_factory)
|
||||
self.predictors[category, label] = pred
|
||||
y = y_train[:, label].astype(int)
|
||||
pred.fit(x_train, y)
|
||||
|
||||
# If y is either always one or always zero, set fixed threshold
|
||||
y_avg = np.average(y)
|
||||
if (not self.dynamic_thresholds) or y_avg <= 0.001 or y_avg >= 0.999:
|
||||
self.thresholds[category, label] = self.min_threshold[label]
|
||||
logger.debug(" Setting threshold to %.4f" % self.min_threshold[label])
|
||||
continue
|
||||
|
||||
# Calculate threshold dynamically using ROC curve
|
||||
y_scores = pred.predict_proba(x_train)[:, 1]
|
||||
fpr, tpr, thresholds = roc_curve(y, y_scores)
|
||||
k = 0
|
||||
while True:
|
||||
if (k + 1) > len(fpr):
|
||||
break
|
||||
if fpr[k + 1] > self.max_fpr[label]:
|
||||
break
|
||||
if thresholds[k + 1] < self.min_threshold[label]:
|
||||
break
|
||||
k = k + 1
|
||||
logger.debug(" Setting threshold to %.4f (fpr=%.4f, tpr=%.4f)" % (thresholds[k], fpr[k], tpr[k]))
|
||||
self.thresholds[category, label] = thresholds[k]
|
||||
|
||||
|
||||
def merge(self, other_components):
|
||||
# Merge x_train and y_train
|
||||
keys = set(self.x_train.keys())
|
||||
for comp in other_components:
|
||||
keys = keys.union(set(comp.x_train.keys()))
|
||||
for key in keys:
|
||||
x_train_submatrices = [comp.x_train[key]
|
||||
for comp in other_components
|
||||
if key in comp.x_train.keys()]
|
||||
y_train_submatrices = [comp.y_train[key]
|
||||
for comp in other_components
|
||||
if key in comp.y_train.keys()]
|
||||
if key in self.x_train.keys():
|
||||
x_train_submatrices += [self.x_train[key]]
|
||||
y_train_submatrices += [self.y_train[key]]
|
||||
self.x_train[key] = np.vstack(x_train_submatrices)
|
||||
self.y_train[key] = np.vstack(y_train_submatrices)
|
||||
|
||||
# Merge trained predictors
|
||||
for comp in other_components:
|
||||
for key in comp.predictors.keys():
|
||||
if key not in self.predictors.keys():
|
||||
self.predictors[key] = comp.predictors[key]
|
||||
self.thresholds[key] = comp.thresholds[key]
|
||||
|
||||
|
||||
# Deprecated
|
||||
class WarmStartPredictor(ABC):
|
||||
def __init__(self, thr_clip=[0.50, 0.50]):
|
||||
self.models = [None, None]
|
||||
@@ -49,7 +287,8 @@ class WarmStartPredictor(ABC):
|
||||
def _fit(self, x_train, y_train, label):
|
||||
pass
|
||||
|
||||
|
||||
|
||||
# Deprecated
|
||||
class LogisticWarmStartPredictor(WarmStartPredictor):
|
||||
def __init__(self,
|
||||
min_samples=100,
|
||||
@@ -91,6 +330,7 @@ class LogisticWarmStartPredictor(WarmStartPredictor):
|
||||
return reg
|
||||
|
||||
|
||||
# Deprecated
|
||||
class KnnWarmStartPredictor(WarmStartPredictor):
|
||||
def __init__(self,
|
||||
k=50,
|
||||
@@ -128,102 +368,5 @@ class KnnWarmStartPredictor(WarmStartPredictor):
|
||||
return knn
|
||||
|
||||
|
||||
class WarmStartComponent(Component):
|
||||
def __init__(self,
|
||||
predictor_prototype=KnnWarmStartPredictor(),
|
||||
mode="exact",
|
||||
):
|
||||
self.mode = mode
|
||||
self.x_train = {}
|
||||
self.y_train = {}
|
||||
self.predictors = {}
|
||||
self.predictor_prototype = predictor_prototype
|
||||
self.is_warm_start_available = False
|
||||
|
||||
def before_solve(self, solver, instance, model):
|
||||
# Solve linear relaxation
|
||||
lr_solver = pe.SolverFactory("gurobi")
|
||||
lr_solver.options["threads"] = 4
|
||||
lr_solver.options["relax_integrality"] = 1
|
||||
lr_solver.solve(model, tee=solver.tee)
|
||||
|
||||
# Build x_test
|
||||
x_test = CombinedExtractor([UserFeaturesExtractor(),
|
||||
SolutionExtractor(),
|
||||
]).extract([instance], [model])
|
||||
|
||||
# Update self.x_train
|
||||
self.x_train = Extractor.merge([self.x_train, x_test],
|
||||
vertical=True)
|
||||
|
||||
# Predict solutions
|
||||
count_total, count_fixed = 0, 0
|
||||
var_split = Extractor.split_variables(instance, model)
|
||||
for category in var_split.keys():
|
||||
var_index_pairs = var_split[category]
|
||||
if category not in self.predictors.keys():
|
||||
continue
|
||||
ws = self.predictors[category].predict(x_test[category])
|
||||
assert ws.shape == (len(var_index_pairs), 2)
|
||||
for i in range(len(var_index_pairs)):
|
||||
var, index = var_index_pairs[i]
|
||||
count_total += 1
|
||||
if self.mode == "heuristic":
|
||||
if ws[i,0] > 0.5:
|
||||
var[index].fix(0)
|
||||
count_fixed += 1
|
||||
if solver.is_persistent:
|
||||
solver.internal_solver.update_var(var[index])
|
||||
elif ws[i,1] > 0.5:
|
||||
var[index].fix(1)
|
||||
count_fixed += 1
|
||||
if solver.is_persistent:
|
||||
solver.internal_solver.update_var(var[index])
|
||||
else:
|
||||
var[index].value = None
|
||||
if ws[i,0] > 0.5:
|
||||
count_fixed += 1
|
||||
var[index].value = 0
|
||||
self.is_warm_start_available = True
|
||||
elif ws[i,1] > 0.5:
|
||||
count_fixed += 1
|
||||
var[index].value = 1
|
||||
self.is_warm_start_available = True
|
||||
logger.info("Setting values for %d variables (out of %d)" % (count_fixed, count_total))
|
||||
|
||||
|
||||
def after_solve(self, solver, instance, model):
|
||||
y_test = SolutionExtractor().extract([instance], [model])
|
||||
self.y_train = Extractor.merge([self.y_train, y_test], vertical=True)
|
||||
|
||||
def fit(self, solver, n_jobs=1):
|
||||
for category in tqdm(self.x_train.keys(), desc="Warm start"):
|
||||
x_train = self.x_train[category]
|
||||
y_train = self.y_train[category]
|
||||
self.predictors[category] = deepcopy(self.predictor_prototype)
|
||||
self.predictors[category].fit(x_train, y_train)
|
||||
|
||||
def merge(self, other_components):
|
||||
# Merge x_train and y_train
|
||||
keys = set(self.x_train.keys())
|
||||
for comp in other_components:
|
||||
keys = keys.union(set(comp.x_train.keys()))
|
||||
for key in keys:
|
||||
x_train_submatrices = [comp.x_train[key]
|
||||
for comp in other_components
|
||||
if key in comp.x_train.keys()]
|
||||
y_train_submatrices = [comp.y_train[key]
|
||||
for comp in other_components
|
||||
if key in comp.y_train.keys()]
|
||||
if key in self.x_train.keys():
|
||||
x_train_submatrices += [self.x_train[key]]
|
||||
y_train_submatrices += [self.y_train[key]]
|
||||
self.x_train[key] = np.vstack(x_train_submatrices)
|
||||
self.y_train[key] = np.vstack(y_train_submatrices)
|
||||
|
||||
# Merge trained predictors
|
||||
for comp in other_components:
|
||||
for key in comp.predictors.keys():
|
||||
if key not in self.predictors.keys():
|
||||
self.predictors[key] = comp.predictors[key]
|
||||
|
||||
Reference in New Issue
Block a user