mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-08 10:28:52 -06:00
Reformat source code with Black; add pre-commit hooks and CI checks
This commit is contained in:
@@ -19,43 +19,53 @@ class BenchmarkRunner:
|
||||
assert isinstance(solver, LearningSolver)
|
||||
self.solvers = solvers
|
||||
self.results = None
|
||||
|
||||
|
||||
def solve(self, instances, tee=False):
|
||||
for (solver_name, solver) in self.solvers.items():
|
||||
for i in tqdm(range(len((instances)))):
|
||||
results = solver.solve(deepcopy(instances[i]), tee=tee)
|
||||
self._push_result(results, solver=solver, solver_name=solver_name, instance=i)
|
||||
self._push_result(
|
||||
results,
|
||||
solver=solver,
|
||||
solver_name=solver_name,
|
||||
instance=i,
|
||||
)
|
||||
|
||||
def parallel_solve(self,
|
||||
instances,
|
||||
n_jobs=1,
|
||||
n_trials=1,
|
||||
index_offset=0,
|
||||
):
|
||||
def parallel_solve(
|
||||
self,
|
||||
instances,
|
||||
n_jobs=1,
|
||||
n_trials=1,
|
||||
index_offset=0,
|
||||
):
|
||||
self._silence_miplearn_logger()
|
||||
trials = instances * n_trials
|
||||
for (solver_name, solver) in self.solvers.items():
|
||||
results = solver.parallel_solve(trials,
|
||||
n_jobs=n_jobs,
|
||||
label="Solve (%s)" % solver_name,
|
||||
output=None)
|
||||
results = solver.parallel_solve(
|
||||
trials,
|
||||
n_jobs=n_jobs,
|
||||
label="Solve (%s)" % solver_name,
|
||||
output=None,
|
||||
)
|
||||
for i in range(len(trials)):
|
||||
idx = (i % len(instances)) + index_offset
|
||||
self._push_result(results[i],
|
||||
solver=solver,
|
||||
solver_name=solver_name,
|
||||
instance=idx)
|
||||
self._push_result(
|
||||
results[i],
|
||||
solver=solver,
|
||||
solver_name=solver_name,
|
||||
instance=idx,
|
||||
)
|
||||
self._restore_miplearn_logger()
|
||||
|
||||
|
||||
def raw_results(self):
|
||||
return self.results
|
||||
|
||||
|
||||
def save_results(self, filename):
|
||||
self.results.to_csv(filename)
|
||||
|
||||
|
||||
def load_results(self, filename):
|
||||
self.results = pd.read_csv(filename, index_col=0)
|
||||
|
||||
|
||||
def load_state(self, filename):
|
||||
for (solver_name, solver) in self.solvers.items():
|
||||
solver.load_state(filename)
|
||||
@@ -63,62 +73,69 @@ class BenchmarkRunner:
|
||||
def fit(self, training_instances):
|
||||
for (solver_name, solver) in self.solvers.items():
|
||||
solver.fit(training_instances)
|
||||
|
||||
|
||||
def _push_result(self, result, solver, solver_name, instance):
|
||||
if self.results is None:
|
||||
self.results = pd.DataFrame(columns=["Solver",
|
||||
"Instance",
|
||||
"Wallclock Time",
|
||||
"Lower Bound",
|
||||
"Upper Bound",
|
||||
"Gap",
|
||||
"Nodes",
|
||||
"Mode",
|
||||
"Sense",
|
||||
"Predicted LB",
|
||||
"Predicted UB",
|
||||
])
|
||||
self.results = pd.DataFrame(
|
||||
columns=[
|
||||
"Solver",
|
||||
"Instance",
|
||||
"Wallclock Time",
|
||||
"Lower Bound",
|
||||
"Upper Bound",
|
||||
"Gap",
|
||||
"Nodes",
|
||||
"Mode",
|
||||
"Sense",
|
||||
"Predicted LB",
|
||||
"Predicted UB",
|
||||
]
|
||||
)
|
||||
lb = result["Lower bound"]
|
||||
ub = result["Upper bound"]
|
||||
gap = (ub - lb) / lb
|
||||
if "Predicted LB" not in result:
|
||||
result["Predicted LB"] = float("nan")
|
||||
result["Predicted UB"] = float("nan")
|
||||
self.results = self.results.append({
|
||||
"Solver": solver_name,
|
||||
"Instance": instance,
|
||||
"Wallclock Time": result["Wallclock time"],
|
||||
"Lower Bound": lb,
|
||||
"Upper Bound": ub,
|
||||
"Gap": gap,
|
||||
"Nodes": result["Nodes"],
|
||||
"Mode": solver.mode,
|
||||
"Sense": result["Sense"],
|
||||
"Predicted LB": result["Predicted LB"],
|
||||
"Predicted UB": result["Predicted UB"],
|
||||
}, ignore_index=True)
|
||||
self.results = self.results.append(
|
||||
{
|
||||
"Solver": solver_name,
|
||||
"Instance": instance,
|
||||
"Wallclock Time": result["Wallclock time"],
|
||||
"Lower Bound": lb,
|
||||
"Upper Bound": ub,
|
||||
"Gap": gap,
|
||||
"Nodes": result["Nodes"],
|
||||
"Mode": solver.mode,
|
||||
"Sense": result["Sense"],
|
||||
"Predicted LB": result["Predicted LB"],
|
||||
"Predicted UB": result["Predicted UB"],
|
||||
},
|
||||
ignore_index=True,
|
||||
)
|
||||
groups = self.results.groupby("Instance")
|
||||
best_lower_bound = groups["Lower Bound"].transform("max")
|
||||
best_upper_bound = groups["Upper Bound"].transform("min")
|
||||
best_gap = groups["Gap"].transform("min")
|
||||
best_nodes = np.maximum(1, groups["Nodes"].transform("min"))
|
||||
best_wallclock_time = groups["Wallclock Time"].transform("min")
|
||||
self.results["Relative Lower Bound"] = \
|
||||
self.results["Lower Bound"] / best_lower_bound
|
||||
self.results["Relative Upper Bound"] = \
|
||||
self.results["Upper Bound"] / best_upper_bound
|
||||
self.results["Relative Wallclock Time"] = \
|
||||
self.results["Wallclock Time"] / best_wallclock_time
|
||||
self.results["Relative Gap"] = \
|
||||
self.results["Gap"] / best_gap
|
||||
self.results["Relative Nodes"] = \
|
||||
self.results["Nodes"] / best_nodes
|
||||
self.results["Relative Lower Bound"] = (
|
||||
self.results["Lower Bound"] / best_lower_bound
|
||||
)
|
||||
self.results["Relative Upper Bound"] = (
|
||||
self.results["Upper Bound"] / best_upper_bound
|
||||
)
|
||||
self.results["Relative Wallclock Time"] = (
|
||||
self.results["Wallclock Time"] / best_wallclock_time
|
||||
)
|
||||
self.results["Relative Gap"] = self.results["Gap"] / best_gap
|
||||
self.results["Relative Nodes"] = self.results["Nodes"] / best_nodes
|
||||
|
||||
def save_chart(self, filename):
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
from numpy import median
|
||||
|
||||
|
||||
sns.set_style("whitegrid")
|
||||
sns.set_palette("Blues_r")
|
||||
results = self.raw_results()
|
||||
@@ -134,71 +151,76 @@ class BenchmarkRunner:
|
||||
obj_column = "Lower Bound"
|
||||
predicted_obj_column = "Predicted LB"
|
||||
|
||||
fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=1,
|
||||
ncols=4,
|
||||
figsize=(12,4),
|
||||
gridspec_kw={'width_ratios': [2, 1, 1, 2]})
|
||||
|
||||
fig, (ax1, ax2, ax3, ax4) = plt.subplots(
|
||||
nrows=1,
|
||||
ncols=4,
|
||||
figsize=(12, 4),
|
||||
gridspec_kw={"width_ratios": [2, 1, 1, 2]},
|
||||
)
|
||||
|
||||
# Figure 1: Solver x Wallclock Time
|
||||
sns.stripplot(x="Solver",
|
||||
y="Wallclock Time",
|
||||
data=results,
|
||||
ax=ax1,
|
||||
jitter=0.25,
|
||||
size=4.0,
|
||||
)
|
||||
sns.barplot(x="Solver",
|
||||
y="Wallclock Time",
|
||||
data=results,
|
||||
ax=ax1,
|
||||
errwidth=0.,
|
||||
alpha=0.4,
|
||||
estimator=median,
|
||||
)
|
||||
ax1.set(ylabel='Wallclock Time (s)')
|
||||
|
||||
sns.stripplot(
|
||||
x="Solver",
|
||||
y="Wallclock Time",
|
||||
data=results,
|
||||
ax=ax1,
|
||||
jitter=0.25,
|
||||
size=4.0,
|
||||
)
|
||||
sns.barplot(
|
||||
x="Solver",
|
||||
y="Wallclock Time",
|
||||
data=results,
|
||||
ax=ax1,
|
||||
errwidth=0.0,
|
||||
alpha=0.4,
|
||||
estimator=median,
|
||||
)
|
||||
ax1.set(ylabel="Wallclock Time (s)")
|
||||
|
||||
# Figure 2: Solver x Gap (%)
|
||||
ax2.set_ylim(-0.5, 5.5)
|
||||
sns.stripplot(x="Solver",
|
||||
y="Gap (%)",
|
||||
jitter=0.25,
|
||||
data=results[results["Mode"] != "heuristic"],
|
||||
ax=ax2,
|
||||
size=4.0,
|
||||
)
|
||||
|
||||
sns.stripplot(
|
||||
x="Solver",
|
||||
y="Gap (%)",
|
||||
jitter=0.25,
|
||||
data=results[results["Mode"] != "heuristic"],
|
||||
ax=ax2,
|
||||
size=4.0,
|
||||
)
|
||||
|
||||
# Figure 3: Solver x Primal Value
|
||||
ax3.set_ylim(0.95,1.05)
|
||||
sns.stripplot(x="Solver",
|
||||
y=primal_column,
|
||||
jitter=0.25,
|
||||
data=results[results["Mode"] == "heuristic"],
|
||||
ax=ax3,
|
||||
)
|
||||
ax3.set_ylim(0.95, 1.05)
|
||||
sns.stripplot(
|
||||
x="Solver",
|
||||
y=primal_column,
|
||||
jitter=0.25,
|
||||
data=results[results["Mode"] == "heuristic"],
|
||||
ax=ax3,
|
||||
)
|
||||
|
||||
# Figure 4: Predicted vs Actual Objective Value
|
||||
sns.scatterplot(x=obj_column,
|
||||
y=predicted_obj_column,
|
||||
hue="Solver",
|
||||
data=results[results["Mode"] != "heuristic"],
|
||||
ax=ax4,
|
||||
)
|
||||
sns.scatterplot(
|
||||
x=obj_column,
|
||||
y=predicted_obj_column,
|
||||
hue="Solver",
|
||||
data=results[results["Mode"] != "heuristic"],
|
||||
ax=ax4,
|
||||
)
|
||||
xlim, ylim = ax4.get_xlim(), ax4.get_ylim()
|
||||
ax4.plot([-1e10, 1e10], [-1e10, 1e10], ls='-', color="#cccccc")
|
||||
ax4.plot([-1e10, 1e10], [-1e10, 1e10], ls="-", color="#cccccc")
|
||||
ax4.set_xlim(xlim)
|
||||
ax4.set_ylim(ylim)
|
||||
ax4.get_legend().remove()
|
||||
|
||||
fig.tight_layout()
|
||||
plt.savefig(filename, bbox_inches='tight', dpi=150)
|
||||
|
||||
plt.savefig(filename, bbox_inches="tight", dpi=150)
|
||||
|
||||
def _silence_miplearn_logger(self):
|
||||
miplearn_logger = logging.getLogger("miplearn")
|
||||
self.prev_log_level = miplearn_logger.getEffectiveLevel()
|
||||
miplearn_logger.setLevel(logging.WARNING)
|
||||
|
||||
miplearn_logger.setLevel(logging.WARNING)
|
||||
|
||||
def _restore_miplearn_logger(self):
|
||||
miplearn_logger = logging.getLogger("miplearn")
|
||||
miplearn_logger.setLevel(self.prev_log_level)
|
||||
|
||||
|
||||
miplearn_logger.setLevel(self.prev_log_level)
|
||||
|
||||
Reference in New Issue
Block a user