Reformat source code with Black; add pre-commit hooks and CI checks

This commit is contained in:
2020-12-05 10:59:33 -06:00
parent 3823931382
commit d99600f101
49 changed files with 1291 additions and 972 deletions

View File

@@ -4,10 +4,7 @@
from unittest.mock import Mock, call
from miplearn import (RelaxationComponent,
LearningSolver,
Instance,
InternalSolver)
from miplearn import RelaxationComponent, LearningSolver, Instance, InternalSolver
from miplearn.classifiers import Classifier
@@ -16,41 +13,49 @@ def _setup():
internal = solver.internal_solver = Mock(spec=InternalSolver)
internal.get_constraint_ids = Mock(return_value=["c1", "c2", "c3", "c4"])
internal.get_constraint_slacks = Mock(side_effect=lambda: {
"c1": 0.5,
"c2": 0.0,
"c3": 0.0,
"c4": 1.4,
})
internal.get_constraint_slacks = Mock(
side_effect=lambda: {
"c1": 0.5,
"c2": 0.0,
"c3": 0.0,
"c4": 1.4,
}
)
internal.extract_constraint = Mock(side_effect=lambda cid: "<%s>" % cid)
internal.is_constraint_satisfied = Mock(return_value=False)
instance = Mock(spec=Instance)
instance.get_constraint_features = Mock(side_effect=lambda cid: {
"c2": [1.0, 0.0],
"c3": [0.5, 0.5],
"c4": [1.0],
}[cid])
instance.get_constraint_category = Mock(side_effect=lambda cid: {
"c1": None,
"c2": "type-a",
"c3": "type-a",
"c4": "type-b",
}[cid])
instance.get_constraint_features = Mock(
side_effect=lambda cid: {
"c2": [1.0, 0.0],
"c3": [0.5, 0.5],
"c4": [1.0],
}[cid]
)
instance.get_constraint_category = Mock(
side_effect=lambda cid: {
"c1": None,
"c2": "type-a",
"c3": "type-a",
"c4": "type-b",
}[cid]
)
classifiers = {
"type-a": Mock(spec=Classifier),
"type-b": Mock(spec=Classifier),
}
classifiers["type-a"].predict_proba = \
Mock(return_value=[
classifiers["type-a"].predict_proba = Mock(
return_value=[
[0.20, 0.80],
[0.05, 0.95],
])
classifiers["type-b"].predict_proba = \
Mock(return_value=[
]
)
classifiers["type-b"].predict_proba = Mock(
return_value=[
[0.02, 0.98],
])
]
)
return solver, internal, instance, classifiers
@@ -72,25 +77,39 @@ def test_usage():
# Should query category and features for each constraint in the model
assert instance.get_constraint_category.call_count == 4
instance.get_constraint_category.assert_has_calls([
call("c1"), call("c2"), call("c3"), call("c4"),
])
instance.get_constraint_category.assert_has_calls(
[
call("c1"),
call("c2"),
call("c3"),
call("c4"),
]
)
# For constraint with non-null categories, should ask for features
assert instance.get_constraint_features.call_count == 3
instance.get_constraint_features.assert_has_calls([
call("c2"), call("c3"), call("c4"),
])
instance.get_constraint_features.assert_has_calls(
[
call("c2"),
call("c3"),
call("c4"),
]
)
# Should ask ML to predict whether constraint should be removed
component.classifiers["type-a"].predict_proba.assert_called_once_with([[1.0, 0.0], [0.5, 0.5]])
component.classifiers["type-a"].predict_proba.assert_called_once_with(
[[1.0, 0.0], [0.5, 0.5]]
)
component.classifiers["type-b"].predict_proba.assert_called_once_with([[1.0]])
# Should ask internal solver to remove constraints predicted as redundant
assert internal.extract_constraint.call_count == 2
internal.extract_constraint.assert_has_calls([
call("c3"), call("c4"),
])
internal.extract_constraint.assert_has_calls(
[
call("c3"),
call("c4"),
]
)
# LearningSolver calls after_solve
component.after_solve(solver, instance, None, None)
@@ -111,8 +130,7 @@ def test_usage():
def test_usage_with_check_dropped():
solver, internal, instance, classifiers = _setup()
component = RelaxationComponent(check_dropped=True,
violation_tolerance=1e-3)
component = RelaxationComponent(check_dropped=True, violation_tolerance=1e-3)
component.classifiers = classifiers
# LearningSolver call before_solve
@@ -120,9 +138,12 @@ def test_usage_with_check_dropped():
# Assert constraints are extracted
assert internal.extract_constraint.call_count == 2
internal.extract_constraint.assert_has_calls([
call("c3"), call("c4"),
])
internal.extract_constraint.assert_has_calls(
[
call("c3"),
call("c4"),
]
)
# LearningSolver calls iteration_cb (first time)
should_repeat = component.iteration_cb(solver, instance, None)
@@ -131,15 +152,15 @@ def test_usage_with_check_dropped():
assert should_repeat
# Should ask solver if removed constraints are satisfied (mock always returns false)
internal.is_constraint_satisfied.assert_has_calls([
call("<c3>", 1e-3),
call("<c4>", 1e-3),
])
internal.is_constraint_satisfied.assert_has_calls(
[
call("<c3>", 1e-3),
call("<c4>", 1e-3),
]
)
# Should add constraints back to LP relaxation
internal.add_constraint.assert_has_calls([
call("<c3>"), call("<c4>")
])
internal.add_constraint.assert_has_calls([call("<c3>"), call("<c4>")])
# LearningSolver calls iteration_cb (second time)
should_repeat = component.iteration_cb(solver, instance, None)
@@ -148,21 +169,22 @@ def test_usage_with_check_dropped():
def test_x_y_fit_predict_evaluate():
instances = [Mock(spec=Instance), Mock(spec=Instance)]
component = RelaxationComponent(slack_tolerance=0.05,
threshold=0.80)
component = RelaxationComponent(slack_tolerance=0.05, threshold=0.80)
component.classifiers = {
"type-a": Mock(spec=Classifier),
"type-b": Mock(spec=Classifier),
}
component.classifiers["type-a"].predict_proba = \
Mock(return_value=[
component.classifiers["type-a"].predict_proba = Mock(
return_value=[
[0.20, 0.80],
])
component.classifiers["type-b"].predict_proba = \
Mock(return_value=[
]
)
component.classifiers["type-b"].predict_proba = Mock(
return_value=[
[0.50, 0.50],
[0.05, 0.95],
])
]
)
# First mock instance
instances[0].slacks = {
@@ -171,17 +193,21 @@ def test_x_y_fit_predict_evaluate():
"c3": 0.00,
"c4": 30.0,
}
instances[0].get_constraint_category = Mock(side_effect=lambda cid: {
"c1": None,
"c2": "type-a",
"c3": "type-a",
"c4": "type-b",
}[cid])
instances[0].get_constraint_features = Mock(side_effect=lambda cid: {
"c2": [1.0, 0.0],
"c3": [0.5, 0.5],
"c4": [1.0],
}[cid])
instances[0].get_constraint_category = Mock(
side_effect=lambda cid: {
"c1": None,
"c2": "type-a",
"c3": "type-a",
"c4": "type-b",
}[cid]
)
instances[0].get_constraint_features = Mock(
side_effect=lambda cid: {
"c2": [1.0, 0.0],
"c3": [0.5, 0.5],
"c4": [1.0],
}[cid]
)
# Second mock instance
instances[1].slacks = {
@@ -190,26 +216,27 @@ def test_x_y_fit_predict_evaluate():
"c4": 0.00,
"c5": 0.00,
}
instances[1].get_constraint_category = Mock(side_effect=lambda cid: {
"c1": None,
"c3": "type-a",
"c4": "type-b",
"c5": "type-b",
}[cid])
instances[1].get_constraint_features = Mock(side_effect=lambda cid: {
"c3": [0.3, 0.4],
"c4": [0.7],
"c5": [0.8],
}[cid])
instances[1].get_constraint_category = Mock(
side_effect=lambda cid: {
"c1": None,
"c3": "type-a",
"c4": "type-b",
"c5": "type-b",
}[cid]
)
instances[1].get_constraint_features = Mock(
side_effect=lambda cid: {
"c3": [0.3, 0.4],
"c4": [0.7],
"c5": [0.8],
}[cid]
)
expected_x = {
"type-a": [[1.0, 0.0], [0.5, 0.5], [0.3, 0.4]],
"type-b": [[1.0], [0.7], [0.8]],
}
expected_y = {
"type-a": [[0], [0], [1]],
"type-b": [[1], [0], [0]]
}
expected_y = {"type-a": [[0], [0], [1]], "type-b": [[1], [0], [0]]}
# Should build X and Y matrices correctly
assert component.x(instances) == expected_x
@@ -217,13 +244,16 @@ def test_x_y_fit_predict_evaluate():
# Should pass along X and Y matrices to classifiers
component.fit(instances)
component.classifiers["type-a"].fit.assert_called_with(expected_x["type-a"], expected_y["type-a"])
component.classifiers["type-b"].fit.assert_called_with(expected_x["type-b"], expected_y["type-b"])
component.classifiers["type-a"].fit.assert_called_with(
expected_x["type-a"],
expected_y["type-a"],
)
component.classifiers["type-b"].fit.assert_called_with(
expected_x["type-b"],
expected_y["type-b"],
)
assert component.predict(expected_x) == {
"type-a": [[1]],
"type-b": [[0], [1]]
}
assert component.predict(expected_x) == {"type-a": [[1]], "type-b": [[0], [1]]}
ev = component.evaluate(instances[1])
assert ev["True positive"] == 1