Add training_data argument to after_solve

This commit is contained in:
2021-01-14 10:37:48 -06:00
parent 30d6ea0a9b
commit e12a896504
15 changed files with 148 additions and 58 deletions

View File

@@ -74,13 +74,21 @@ class ConvertTightIneqsIntoEqsStep(Component):
logger.info(f"Converted {self.n_converted} inequalities")
def after_solve(self, solver, instance, model, results):
instance.slacks = solver.internal_solver.get_inequality_slacks()
results["ConvertTight: Kept"] = self.n_kept
results["ConvertTight: Converted"] = self.n_converted
results["ConvertTight: Restored"] = self.n_restored
results["ConvertTight: Inf iterations"] = self.n_infeasible_iterations
results["ConvertTight: Subopt iterations"] = self.n_suboptimal_iterations
def after_solve(
self,
solver,
instance,
model,
stats,
training_data,
):
if "slacks" not in training_data.keys():
training_data["slacks"] = solver.internal_solver.get_inequality_slacks()
stats["ConvertTight: Kept"] = self.n_kept
stats["ConvertTight: Converted"] = self.n_converted
stats["ConvertTight: Restored"] = self.n_restored
stats["ConvertTight: Inf iterations"] = self.n_infeasible_iterations
stats["ConvertTight: Subopt iterations"] = self.n_suboptimal_iterations
def fit(self, training_instances):
logger.debug("Extracting x and y...")
@@ -108,7 +116,7 @@ class ConvertTightIneqsIntoEqsStep(Component):
if constraint_ids is not None:
cids = constraint_ids
else:
cids = instance.slacks.keys()
cids = instance.training_data[0]["slacks"].keys()
for cid in cids:
category = instance.get_constraint_category(cid)
if category is None:
@@ -130,7 +138,7 @@ class ConvertTightIneqsIntoEqsStep(Component):
desc="Extract (rlx:conv_ineqs:y)",
disable=len(instances) < 5,
):
for (cid, slack) in instance.slacks.items():
for (cid, slack) in instance.training_data[0]["slacks"].items():
category = instance.get_constraint_category(cid)
if category is None:
continue

View File

@@ -76,12 +76,19 @@ class DropRedundantInequalitiesStep(Component):
self.total_kept += 1
logger.info(f"Extracted {self.total_dropped} predicted constraints")
def after_solve(self, solver, instance, model, results):
def after_solve(
self,
solver,
instance,
model,
stats,
training_data,
):
instance.slacks = solver.internal_solver.get_inequality_slacks()
results["DropRedundant: Kept"] = self.total_kept
results["DropRedundant: Dropped"] = self.total_dropped
results["DropRedundant: Restored"] = self.total_restored
results["DropRedundant: Iterations"] = self.total_iterations
stats["DropRedundant: Kept"] = self.total_kept
stats["DropRedundant: Dropped"] = self.total_dropped
stats["DropRedundant: Restored"] = self.total_restored
stats["DropRedundant: Iterations"] = self.total_iterations
def fit(self, training_instances):
logger.debug("Extracting x and y...")

View File

@@ -17,3 +17,13 @@ class RelaxIntegralityStep(Component):
def before_solve(self, solver, instance, _):
logger.info("Relaxing integrality...")
solver.internal_solver.relax()
def after_solve(
self,
solver,
instance,
model,
stats,
training_data,
):
return

View File

@@ -25,8 +25,7 @@ def test_convert_tight_usage():
original_upper_bound = instance.upper_bound
# Should collect training data
assert hasattr(instance, "slacks")
assert instance.slacks["eq_capacity"] == 0.0
assert instance.training_data[0]["slacks"]["eq_capacity"] == 0.0
# Fit and resolve
solver.fit([instance])
@@ -53,21 +52,6 @@ class TestInstance(Instance):
return m
class TestInstanceMin(Instance):
def to_model(self):
import gurobipy as grb
from gurobipy import GRB
m = grb.Model("model")
x1 = m.addVar(name="x1")
x2 = m.addVar(name="x2")
m.setObjective(x1 + 2 * x2, grb.GRB.MAXIMIZE)
m.addConstr(x1 <= 2, name="c1")
m.addConstr(x2 <= 2, name="c2")
m.addConstr(x1 + x2 <= 3, name="c2")
return m
def test_convert_tight_infeasibility():
comp = ConvertTightIneqsIntoEqsStep()
comp.classifiers = {