mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Add training_data argument to after_solve
This commit is contained in:
@@ -25,8 +25,7 @@ def test_convert_tight_usage():
|
||||
original_upper_bound = instance.upper_bound
|
||||
|
||||
# Should collect training data
|
||||
assert hasattr(instance, "slacks")
|
||||
assert instance.slacks["eq_capacity"] == 0.0
|
||||
assert instance.training_data[0]["slacks"]["eq_capacity"] == 0.0
|
||||
|
||||
# Fit and resolve
|
||||
solver.fit([instance])
|
||||
@@ -53,21 +52,6 @@ class TestInstance(Instance):
|
||||
return m
|
||||
|
||||
|
||||
class TestInstanceMin(Instance):
|
||||
def to_model(self):
|
||||
import gurobipy as grb
|
||||
from gurobipy import GRB
|
||||
|
||||
m = grb.Model("model")
|
||||
x1 = m.addVar(name="x1")
|
||||
x2 = m.addVar(name="x2")
|
||||
m.setObjective(x1 + 2 * x2, grb.GRB.MAXIMIZE)
|
||||
m.addConstr(x1 <= 2, name="c1")
|
||||
m.addConstr(x2 <= 2, name="c2")
|
||||
m.addConstr(x1 + x2 <= 3, name="c2")
|
||||
return m
|
||||
|
||||
|
||||
def test_convert_tight_infeasibility():
|
||||
comp = ConvertTightIneqsIntoEqsStep()
|
||||
comp.classifiers = {
|
||||
|
||||
Reference in New Issue
Block a user