Add training_data argument to after_solve

This commit is contained in:
2021-01-14 10:37:48 -06:00
parent 30d6ea0a9b
commit e12a896504
15 changed files with 148 additions and 58 deletions

View File

@@ -25,8 +25,7 @@ def test_convert_tight_usage():
original_upper_bound = instance.upper_bound
# Should collect training data
assert hasattr(instance, "slacks")
assert instance.slacks["eq_capacity"] == 0.0
assert instance.training_data[0]["slacks"]["eq_capacity"] == 0.0
# Fit and resolve
solver.fit([instance])
@@ -53,21 +52,6 @@ class TestInstance(Instance):
return m
class TestInstanceMin(Instance):
def to_model(self):
import gurobipy as grb
from gurobipy import GRB
m = grb.Model("model")
x1 = m.addVar(name="x1")
x2 = m.addVar(name="x2")
m.setObjective(x1 + 2 * x2, grb.GRB.MAXIMIZE)
m.addConstr(x1 <= 2, name="c1")
m.addConstr(x2 <= 2, name="c2")
m.addConstr(x1 + x2 <= 3, name="c2")
return m
def test_convert_tight_infeasibility():
comp = ConvertTightIneqsIntoEqsStep()
comp.classifiers = {