Add PerVariableTransformer

This commit is contained in:
2019-12-20 14:18:26 -06:00
parent 3ef1733334
commit e4526bc724
13 changed files with 418 additions and 105 deletions

View File

View File

@@ -0,0 +1,51 @@
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
import miplearn
import numpy as np
import pyomo.environ as pe
class KnapsackInstance(miplearn.Instance):
def __init__(self, weights, prices, capacity):
self.weights = weights
self.prices = prices
self.capacity = capacity
def to_model(self):
model = m = pe.ConcreteModel()
items = range(len(self.weights))
m.x = pe.Var(items, domain=pe.Binary)
m.OBJ = pe.Objective(rule=lambda m : sum(m.x[v] * self.prices[v] for v in items),
sense=pe.maximize)
m.eq_capacity = pe.Constraint(rule = lambda m :
sum(m.x[v] * self.weights[v]
for v in items) <= self.capacity)
return m
def get_instance_features(self):
return np.array([
self.capacity,
np.average(self.weights),
])
def get_variable_features(self, var, index):
return np.array([
self.weights[index],
self.prices[index],
])
class KnapsackInstance2(KnapsackInstance):
"""
Alternative implementation of the Knapsack Problem, which assigns a different category for each
decision variable, and therefore trains one machine learning model per variable.
"""
def get_instance_features(self):
return np.hstack([self.weights, self.prices])
def get_variable_features(self, var, index):
return np.array([
])
def get_variable_category(self, var, index):
return index

60
miplearn/problems/stab.py Normal file
View File

@@ -0,0 +1,60 @@
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
import numpy as np
import pyomo.environ as pe
import networkx as nx
from miplearn import Instance
import random
class MaxStableSetGenerator:
def __init__(self, sizes=[50], densities=[0.1]):
self.sizes = sizes
self.densities = densities
def generate(self):
size = random.choice(self.sizes)
density = random.choice(self.densities)
self.graph = nx.generators.random_graphs.binomial_graph(size, density)
weights = np.ones(self.graph.number_of_nodes())
return MaxStableSetInstance(self.graph, weights)
class MaxStableSetInstance(Instance):
def __init__(self, graph, weights):
self.graph = graph
self.weights = weights
def to_model(self):
nodes = list(self.graph.nodes)
edges = list(self.graph.edges)
model = m = pe.ConcreteModel()
m.x = pe.Var(nodes, domain=pe.Binary)
m.OBJ = pe.Objective(rule=lambda m : sum(m.x[v] * self.weights[v] for v in nodes),
sense=pe.maximize)
m.edge_eqs = pe.ConstraintList()
for edge in edges:
m.edge_eqs.add(m.x[edge[0]] + m.x[edge[1]] <= 1)
return m
def get_instance_features(self):
return np.array([
self.graph.number_of_nodes(),
self.graph.number_of_edges(),
])
def get_variable_features(self, var, index):
first_neighbors = list(self.graph.neighbors(index))
second_neighbors = [list(self.graph.neighbors(u)) for u in first_neighbors]
degree = len(first_neighbors)
neighbor_degrees = sorted([len(nn) for nn in second_neighbors])
neighbor_degrees = neighbor_degrees + [100.] * 10
return np.array([
degree,
neighbor_degrees[0] - degree,
neighbor_degrees[1] - degree,
neighbor_degrees[2] - degree,
])