mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Add PerVariableTransformer
This commit is contained in:
0
miplearn/problems/__init__.py
Normal file
0
miplearn/problems/__init__.py
Normal file
51
miplearn/problems/knapsack.py
Normal file
51
miplearn/problems/knapsack.py
Normal file
@@ -0,0 +1,51 @@
|
||||
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
import miplearn
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
|
||||
class KnapsackInstance(miplearn.Instance):
|
||||
def __init__(self, weights, prices, capacity):
|
||||
self.weights = weights
|
||||
self.prices = prices
|
||||
self.capacity = capacity
|
||||
|
||||
def to_model(self):
|
||||
model = m = pe.ConcreteModel()
|
||||
items = range(len(self.weights))
|
||||
m.x = pe.Var(items, domain=pe.Binary)
|
||||
m.OBJ = pe.Objective(rule=lambda m : sum(m.x[v] * self.prices[v] for v in items),
|
||||
sense=pe.maximize)
|
||||
m.eq_capacity = pe.Constraint(rule = lambda m :
|
||||
sum(m.x[v] * self.weights[v]
|
||||
for v in items) <= self.capacity)
|
||||
return m
|
||||
|
||||
def get_instance_features(self):
|
||||
return np.array([
|
||||
self.capacity,
|
||||
np.average(self.weights),
|
||||
])
|
||||
|
||||
def get_variable_features(self, var, index):
|
||||
return np.array([
|
||||
self.weights[index],
|
||||
self.prices[index],
|
||||
])
|
||||
|
||||
class KnapsackInstance2(KnapsackInstance):
|
||||
"""
|
||||
Alternative implementation of the Knapsack Problem, which assigns a different category for each
|
||||
decision variable, and therefore trains one machine learning model per variable.
|
||||
"""
|
||||
def get_instance_features(self):
|
||||
return np.hstack([self.weights, self.prices])
|
||||
|
||||
def get_variable_features(self, var, index):
|
||||
return np.array([
|
||||
])
|
||||
|
||||
def get_variable_category(self, var, index):
|
||||
return index
|
||||
60
miplearn/problems/stab.py
Normal file
60
miplearn/problems/stab.py
Normal file
@@ -0,0 +1,60 @@
|
||||
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
import networkx as nx
|
||||
from miplearn import Instance
|
||||
import random
|
||||
|
||||
class MaxStableSetGenerator:
|
||||
def __init__(self, sizes=[50], densities=[0.1]):
|
||||
self.sizes = sizes
|
||||
self.densities = densities
|
||||
|
||||
def generate(self):
|
||||
size = random.choice(self.sizes)
|
||||
density = random.choice(self.densities)
|
||||
self.graph = nx.generators.random_graphs.binomial_graph(size, density)
|
||||
weights = np.ones(self.graph.number_of_nodes())
|
||||
return MaxStableSetInstance(self.graph, weights)
|
||||
|
||||
|
||||
class MaxStableSetInstance(Instance):
|
||||
def __init__(self, graph, weights):
|
||||
self.graph = graph
|
||||
self.weights = weights
|
||||
|
||||
def to_model(self):
|
||||
nodes = list(self.graph.nodes)
|
||||
edges = list(self.graph.edges)
|
||||
model = m = pe.ConcreteModel()
|
||||
m.x = pe.Var(nodes, domain=pe.Binary)
|
||||
m.OBJ = pe.Objective(rule=lambda m : sum(m.x[v] * self.weights[v] for v in nodes),
|
||||
sense=pe.maximize)
|
||||
m.edge_eqs = pe.ConstraintList()
|
||||
for edge in edges:
|
||||
m.edge_eqs.add(m.x[edge[0]] + m.x[edge[1]] <= 1)
|
||||
return m
|
||||
|
||||
def get_instance_features(self):
|
||||
return np.array([
|
||||
self.graph.number_of_nodes(),
|
||||
self.graph.number_of_edges(),
|
||||
])
|
||||
|
||||
def get_variable_features(self, var, index):
|
||||
first_neighbors = list(self.graph.neighbors(index))
|
||||
second_neighbors = [list(self.graph.neighbors(u)) for u in first_neighbors]
|
||||
degree = len(first_neighbors)
|
||||
neighbor_degrees = sorted([len(nn) for nn in second_neighbors])
|
||||
neighbor_degrees = neighbor_degrees + [100.] * 10
|
||||
return np.array([
|
||||
degree,
|
||||
neighbor_degrees[0] - degree,
|
||||
neighbor_degrees[1] - degree,
|
||||
neighbor_degrees[2] - degree,
|
||||
])
|
||||
|
||||
|
||||
Reference in New Issue
Block a user