mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Rename more methods to _old
This commit is contained in:
@@ -16,7 +16,7 @@ if TYPE_CHECKING:
|
||||
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
class Component:
|
||||
class Component(EnforceOverrides):
|
||||
"""
|
||||
A Component is an object which adds functionality to a LearningSolver.
|
||||
|
||||
@@ -205,7 +205,7 @@ class Component:
|
||||
"""
|
||||
pass
|
||||
|
||||
def xy_instances(
|
||||
def xy_instances_old(
|
||||
self,
|
||||
instances: List[Instance],
|
||||
) -> Tuple[Dict, Dict]:
|
||||
@@ -227,11 +227,11 @@ class Component:
|
||||
instance.free()
|
||||
return x_combined, y_combined
|
||||
|
||||
def fit(
|
||||
def fit_old(
|
||||
self,
|
||||
training_instances: List[Instance],
|
||||
) -> None:
|
||||
x, y = self.xy_instances(training_instances)
|
||||
x, y = self.xy_instances_old(training_instances)
|
||||
for cat in x.keys():
|
||||
x[cat] = np.array(x[cat])
|
||||
y[cat] = np.array(y[cat])
|
||||
@@ -294,7 +294,7 @@ class Component:
|
||||
) -> None:
|
||||
return
|
||||
|
||||
def evaluate(self, instances: List[Instance]) -> List:
|
||||
def evaluate_old(self, instances: List[Instance]) -> List:
|
||||
ev = []
|
||||
for instance in instances:
|
||||
instance.load()
|
||||
|
||||
@@ -161,7 +161,7 @@ class DynamicConstraintsComponent(Component):
|
||||
return pred
|
||||
|
||||
@overrides
|
||||
def fit(self, training_instances: List[Instance]) -> None:
|
||||
def fit_old(self, training_instances: List[Instance]) -> None:
|
||||
collected_cids = set()
|
||||
for instance in training_instances:
|
||||
instance.load()
|
||||
@@ -172,7 +172,7 @@ class DynamicConstraintsComponent(Component):
|
||||
instance.free()
|
||||
self.known_cids.clear()
|
||||
self.known_cids.extend(sorted(collected_cids))
|
||||
super().fit(training_instances)
|
||||
super().fit_old(training_instances)
|
||||
|
||||
@overrides
|
||||
def fit_xy(
|
||||
|
||||
@@ -116,8 +116,8 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
return self.dynamic.sample_predict(instance, sample)
|
||||
|
||||
@overrides
|
||||
def fit(self, training_instances: List[Instance]) -> None:
|
||||
self.dynamic.fit(training_instances)
|
||||
def fit_old(self, training_instances: List[Instance]) -> None:
|
||||
self.dynamic.fit_old(training_instances)
|
||||
|
||||
@overrides
|
||||
def fit_xy(
|
||||
|
||||
@@ -120,8 +120,8 @@ class UserCutsComponent(Component):
|
||||
return self.dynamic.sample_predict(instance, sample)
|
||||
|
||||
@overrides
|
||||
def fit(self, training_instances: List["Instance"]) -> None:
|
||||
self.dynamic.fit(training_instances)
|
||||
def fit_old(self, training_instances: List["Instance"]) -> None:
|
||||
self.dynamic.fit_old(training_instances)
|
||||
|
||||
@overrides
|
||||
def fit_xy(
|
||||
|
||||
@@ -46,7 +46,7 @@ class ObjectiveValueComponent(Component):
|
||||
training_data: TrainingSample,
|
||||
) -> None:
|
||||
logger.info("Predicting optimal value...")
|
||||
pred = self.sample_predict(instance, training_data)
|
||||
pred = self.sample_predict_old(instance, training_data)
|
||||
for (c, v) in pred.items():
|
||||
logger.info(f"Predicted {c.lower()}: %.6e" % v)
|
||||
stats[f"Objective: Predicted {c.lower()}"] = v # type: ignore
|
||||
@@ -62,7 +62,7 @@ class ObjectiveValueComponent(Component):
|
||||
self.regressors[c] = self.regressor_prototype.clone()
|
||||
self.regressors[c].fit(x[c], y[c])
|
||||
|
||||
def sample_predict(
|
||||
def sample_predict_old(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
@@ -148,7 +148,7 @@ class ObjectiveValueComponent(Component):
|
||||
}
|
||||
|
||||
result: Dict[Hashable, Dict[str, float]] = {}
|
||||
pred = self.sample_predict(instance, sample)
|
||||
pred = self.sample_predict_old(instance, sample)
|
||||
if sample.upper_bound is not None:
|
||||
result["Upper bound"] = compare(pred["Upper bound"], sample.upper_bound)
|
||||
if sample.lower_bound is not None:
|
||||
|
||||
@@ -415,7 +415,7 @@ class LearningSolver:
|
||||
return
|
||||
for component in self.components.values():
|
||||
logger.info(f"Fitting {component.__class__.__name__}...")
|
||||
component.fit(training_instances)
|
||||
component.fit_old(training_instances)
|
||||
|
||||
def _add_component(self, component: Component) -> None:
|
||||
name = component.__class__.__name__
|
||||
|
||||
Reference in New Issue
Block a user