Rename more methods to _old

This commit is contained in:
2021-04-12 08:55:01 -05:00
parent 08ede5db09
commit e6672a45a0
11 changed files with 69 additions and 66 deletions

View File

@@ -16,7 +16,7 @@ if TYPE_CHECKING:
# noinspection PyMethodMayBeStatic
class Component:
class Component(EnforceOverrides):
"""
A Component is an object which adds functionality to a LearningSolver.
@@ -205,7 +205,7 @@ class Component:
"""
pass
def xy_instances(
def xy_instances_old(
self,
instances: List[Instance],
) -> Tuple[Dict, Dict]:
@@ -227,11 +227,11 @@ class Component:
instance.free()
return x_combined, y_combined
def fit(
def fit_old(
self,
training_instances: List[Instance],
) -> None:
x, y = self.xy_instances(training_instances)
x, y = self.xy_instances_old(training_instances)
for cat in x.keys():
x[cat] = np.array(x[cat])
y[cat] = np.array(y[cat])
@@ -294,7 +294,7 @@ class Component:
) -> None:
return
def evaluate(self, instances: List[Instance]) -> List:
def evaluate_old(self, instances: List[Instance]) -> List:
ev = []
for instance in instances:
instance.load()

View File

@@ -161,7 +161,7 @@ class DynamicConstraintsComponent(Component):
return pred
@overrides
def fit(self, training_instances: List[Instance]) -> None:
def fit_old(self, training_instances: List[Instance]) -> None:
collected_cids = set()
for instance in training_instances:
instance.load()
@@ -172,7 +172,7 @@ class DynamicConstraintsComponent(Component):
instance.free()
self.known_cids.clear()
self.known_cids.extend(sorted(collected_cids))
super().fit(training_instances)
super().fit_old(training_instances)
@overrides
def fit_xy(

View File

@@ -116,8 +116,8 @@ class DynamicLazyConstraintsComponent(Component):
return self.dynamic.sample_predict(instance, sample)
@overrides
def fit(self, training_instances: List[Instance]) -> None:
self.dynamic.fit(training_instances)
def fit_old(self, training_instances: List[Instance]) -> None:
self.dynamic.fit_old(training_instances)
@overrides
def fit_xy(

View File

@@ -120,8 +120,8 @@ class UserCutsComponent(Component):
return self.dynamic.sample_predict(instance, sample)
@overrides
def fit(self, training_instances: List["Instance"]) -> None:
self.dynamic.fit(training_instances)
def fit_old(self, training_instances: List["Instance"]) -> None:
self.dynamic.fit_old(training_instances)
@overrides
def fit_xy(

View File

@@ -46,7 +46,7 @@ class ObjectiveValueComponent(Component):
training_data: TrainingSample,
) -> None:
logger.info("Predicting optimal value...")
pred = self.sample_predict(instance, training_data)
pred = self.sample_predict_old(instance, training_data)
for (c, v) in pred.items():
logger.info(f"Predicted {c.lower()}: %.6e" % v)
stats[f"Objective: Predicted {c.lower()}"] = v # type: ignore
@@ -62,7 +62,7 @@ class ObjectiveValueComponent(Component):
self.regressors[c] = self.regressor_prototype.clone()
self.regressors[c].fit(x[c], y[c])
def sample_predict(
def sample_predict_old(
self,
instance: Instance,
sample: TrainingSample,
@@ -148,7 +148,7 @@ class ObjectiveValueComponent(Component):
}
result: Dict[Hashable, Dict[str, float]] = {}
pred = self.sample_predict(instance, sample)
pred = self.sample_predict_old(instance, sample)
if sample.upper_bound is not None:
result["Upper bound"] = compare(pred["Upper bound"], sample.upper_bound)
if sample.lower_bound is not None: