mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-08 02:18:51 -06:00
Rename more methods to _old
This commit is contained in:
@@ -18,14 +18,14 @@ from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def instance(features: Features) -> Instance:
|
||||
def instance_old(features_old: Features) -> Instance:
|
||||
instance = Mock(spec=Instance)
|
||||
instance.features = features
|
||||
instance.features = features_old
|
||||
return instance
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def features() -> Features:
|
||||
def features_old() -> Features:
|
||||
return Features(
|
||||
instance=InstanceFeatures(
|
||||
user_features=[1.0, 2.0],
|
||||
@@ -95,8 +95,8 @@ def test_sample_xy(sample: Sample) -> None:
|
||||
assert y_actual == y_expected
|
||||
|
||||
|
||||
def test_sample_xy_without_lp(
|
||||
instance: Instance,
|
||||
def test_sample_xy_without_lp_old(
|
||||
instance_old: Instance,
|
||||
sample_without_lp: TrainingSample,
|
||||
) -> None:
|
||||
x_expected = {
|
||||
@@ -107,15 +107,15 @@ def test_sample_xy_without_lp(
|
||||
"Lower bound": [[1.0]],
|
||||
"Upper bound": [[2.0]],
|
||||
}
|
||||
xy = ObjectiveValueComponent().sample_xy_old(instance, sample_without_lp)
|
||||
xy = ObjectiveValueComponent().sample_xy_old(instance_old, sample_without_lp)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
assert y_actual == y_expected
|
||||
|
||||
|
||||
def test_sample_xy_without_ub(
|
||||
instance: Instance,
|
||||
def test_sample_xy_without_ub_old(
|
||||
instance_old: Instance,
|
||||
sample_without_ub_old: TrainingSample,
|
||||
) -> None:
|
||||
x_expected = {
|
||||
@@ -123,7 +123,7 @@ def test_sample_xy_without_ub(
|
||||
"Upper bound": [[1.0, 2.0, 3.0]],
|
||||
}
|
||||
y_expected = {"Lower bound": [[1.0]]}
|
||||
xy = ObjectiveValueComponent().sample_xy_old(instance, sample_without_ub_old)
|
||||
xy = ObjectiveValueComponent().sample_xy_old(instance_old, sample_without_ub_old)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
@@ -197,10 +197,10 @@ def test_fit_xy_without_ub() -> None:
|
||||
|
||||
|
||||
def test_sample_predict(
|
||||
instance: Instance,
|
||||
instance_old: Instance,
|
||||
sample_old: TrainingSample,
|
||||
) -> None:
|
||||
x, y = ObjectiveValueComponent().sample_xy_old(instance, sample_old)
|
||||
x, y = ObjectiveValueComponent().sample_xy_old(instance_old, sample_old)
|
||||
comp = ObjectiveValueComponent()
|
||||
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
||||
comp.regressors["Upper bound"] = Mock(spec=Regressor)
|
||||
@@ -210,7 +210,7 @@ def test_sample_predict(
|
||||
comp.regressors["Upper bound"].predict = Mock( # type: ignore
|
||||
side_effect=lambda _: np.array([[60.0]])
|
||||
)
|
||||
pred = comp.sample_predict(instance, sample_old)
|
||||
pred = comp.sample_predict_old(instance_old, sample_old)
|
||||
assert pred == {
|
||||
"Lower bound": 50.0,
|
||||
"Upper bound": 60.0,
|
||||
@@ -225,17 +225,17 @@ def test_sample_predict(
|
||||
)
|
||||
|
||||
|
||||
def test_sample_predict_without_ub(
|
||||
instance: Instance,
|
||||
def test_sample_predict_without_ub_old(
|
||||
instance_old: Instance,
|
||||
sample_without_ub_old: TrainingSample,
|
||||
) -> None:
|
||||
x, y = ObjectiveValueComponent().sample_xy_old(instance, sample_without_ub_old)
|
||||
x, y = ObjectiveValueComponent().sample_xy_old(instance_old, sample_without_ub_old)
|
||||
comp = ObjectiveValueComponent()
|
||||
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
||||
comp.regressors["Lower bound"].predict = Mock( # type: ignore
|
||||
side_effect=lambda _: np.array([[50.0]])
|
||||
)
|
||||
pred = comp.sample_predict(instance, sample_without_ub_old)
|
||||
pred = comp.sample_predict_old(instance_old, sample_without_ub_old)
|
||||
assert pred == {
|
||||
"Lower bound": 50.0,
|
||||
}
|
||||
@@ -245,13 +245,16 @@ def test_sample_predict_without_ub(
|
||||
)
|
||||
|
||||
|
||||
def test_sample_evaluate(instance: Instance, sample_old: TrainingSample) -> None:
|
||||
def test_sample_evaluate_old(
|
||||
instance_old: Instance,
|
||||
sample_old: TrainingSample,
|
||||
) -> None:
|
||||
comp = ObjectiveValueComponent()
|
||||
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
||||
comp.regressors["Lower bound"].predict = lambda _: np.array([[1.05]]) # type: ignore
|
||||
comp.regressors["Upper bound"] = Mock(spec=Regressor)
|
||||
comp.regressors["Upper bound"].predict = lambda _: np.array([[2.50]]) # type: ignore
|
||||
ev = comp.sample_evaluate_old(instance, sample_old)
|
||||
ev = comp.sample_evaluate_old(instance_old, sample_old)
|
||||
assert ev == {
|
||||
"Lower bound": {
|
||||
"Actual value": 1.0,
|
||||
|
||||
Reference in New Issue
Block a user