Rename more methods to _old

master
Alinson S. Xavier 5 years ago
parent 08ede5db09
commit e6672a45a0
No known key found for this signature in database
GPG Key ID: DCA0DAD4D2F58624

@ -16,7 +16,7 @@ if TYPE_CHECKING:
# noinspection PyMethodMayBeStatic
class Component:
class Component(EnforceOverrides):
"""
A Component is an object which adds functionality to a LearningSolver.
@ -205,7 +205,7 @@ class Component:
"""
pass
def xy_instances(
def xy_instances_old(
self,
instances: List[Instance],
) -> Tuple[Dict, Dict]:
@ -227,11 +227,11 @@ class Component:
instance.free()
return x_combined, y_combined
def fit(
def fit_old(
self,
training_instances: List[Instance],
) -> None:
x, y = self.xy_instances(training_instances)
x, y = self.xy_instances_old(training_instances)
for cat in x.keys():
x[cat] = np.array(x[cat])
y[cat] = np.array(y[cat])
@ -294,7 +294,7 @@ class Component:
) -> None:
return
def evaluate(self, instances: List[Instance]) -> List:
def evaluate_old(self, instances: List[Instance]) -> List:
ev = []
for instance in instances:
instance.load()

@ -161,7 +161,7 @@ class DynamicConstraintsComponent(Component):
return pred
@overrides
def fit(self, training_instances: List[Instance]) -> None:
def fit_old(self, training_instances: List[Instance]) -> None:
collected_cids = set()
for instance in training_instances:
instance.load()
@ -172,7 +172,7 @@ class DynamicConstraintsComponent(Component):
instance.free()
self.known_cids.clear()
self.known_cids.extend(sorted(collected_cids))
super().fit(training_instances)
super().fit_old(training_instances)
@overrides
def fit_xy(

@ -116,8 +116,8 @@ class DynamicLazyConstraintsComponent(Component):
return self.dynamic.sample_predict(instance, sample)
@overrides
def fit(self, training_instances: List[Instance]) -> None:
self.dynamic.fit(training_instances)
def fit_old(self, training_instances: List[Instance]) -> None:
self.dynamic.fit_old(training_instances)
@overrides
def fit_xy(

@ -120,8 +120,8 @@ class UserCutsComponent(Component):
return self.dynamic.sample_predict(instance, sample)
@overrides
def fit(self, training_instances: List["Instance"]) -> None:
self.dynamic.fit(training_instances)
def fit_old(self, training_instances: List["Instance"]) -> None:
self.dynamic.fit_old(training_instances)
@overrides
def fit_xy(

@ -46,7 +46,7 @@ class ObjectiveValueComponent(Component):
training_data: TrainingSample,
) -> None:
logger.info("Predicting optimal value...")
pred = self.sample_predict(instance, training_data)
pred = self.sample_predict_old(instance, training_data)
for (c, v) in pred.items():
logger.info(f"Predicted {c.lower()}: %.6e" % v)
stats[f"Objective: Predicted {c.lower()}"] = v # type: ignore
@ -62,7 +62,7 @@ class ObjectiveValueComponent(Component):
self.regressors[c] = self.regressor_prototype.clone()
self.regressors[c].fit(x[c], y[c])
def sample_predict(
def sample_predict_old(
self,
instance: Instance,
sample: TrainingSample,
@ -148,7 +148,7 @@ class ObjectiveValueComponent(Component):
}
result: Dict[Hashable, Dict[str, float]] = {}
pred = self.sample_predict(instance, sample)
pred = self.sample_predict_old(instance, sample)
if sample.upper_bound is not None:
result["Upper bound"] = compare(pred["Upper bound"], sample.upper_bound)
if sample.lower_bound is not None:

@ -415,7 +415,7 @@ class LearningSolver:
return
for component in self.components.values():
logger.info(f"Fitting {component.__class__.__name__}...")
component.fit(training_instances)
component.fit_old(training_instances)
def _add_component(self, component: Component) -> None:
name = component.__class__.__name__

@ -5,11 +5,11 @@ from typing import Dict, Tuple
from unittest.mock import Mock
from miplearn.components.component import Component
from miplearn.features import Features, TrainingSample
from miplearn.features import Features
from miplearn.instance.base import Instance
def test_xy_instance() -> None:
def test_xy_instance_old() -> None:
def _sample_xy_old(features: Features, sample: str) -> Tuple[Dict, Dict]:
x = {
"s1": {
@ -96,6 +96,6 @@ def test_xy_instance() -> None:
[11],
],
}
x_actual, y_actual = comp.xy_instances([instance_1, instance_2])
x_actual, y_actual = comp.xy_instances_old([instance_1, instance_2])
assert x_actual == x_expected
assert y_actual == y_expected

@ -25,7 +25,7 @@ E = 0.1
@pytest.fixture
def training_instances2() -> List[Instance]:
def training_instances_old() -> List[Instance]:
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
instances[0].features = Features(
instance=InstanceFeatures(
@ -131,11 +131,11 @@ def test_sample_xy(training_instances: List[Instance]) -> None:
assert_equals(y_actual, y_expected)
def test_fit(training_instances2: List[Instance]) -> None:
def test_fit_old(training_instances_old: List[Instance]) -> None:
clf = Mock(spec=Classifier)
clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
comp = DynamicLazyConstraintsComponent(classifier=clf)
comp.fit(training_instances2)
comp.fit_old(training_instances_old)
assert clf.clone.call_count == 2
assert "type-a" in comp.classifiers
@ -197,7 +197,7 @@ def test_fit(training_instances2: List[Instance]) -> None:
)
def test_sample_predict_evaluate(training_instances2: List[Instance]) -> None:
def test_sample_predict_evaluate_old(training_instances_old: List[Instance]) -> None:
comp = DynamicLazyConstraintsComponent()
comp.known_cids.extend(["c1", "c2", "c3", "c4"])
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
@ -211,13 +211,13 @@ def test_sample_predict_evaluate(training_instances2: List[Instance]) -> None:
side_effect=lambda _: np.array([[0.9, 0.1], [0.1, 0.9]])
)
pred = comp.sample_predict(
training_instances2[0],
training_instances2[0].training_data[0],
training_instances_old[0],
training_instances_old[0].training_data[0],
)
assert pred == ["c1", "c4"]
ev = comp.sample_evaluate_old(
training_instances2[0],
training_instances2[0].training_data[0],
training_instances_old[0],
training_instances_old[0].training_data[0],
)
print(ev)
assert ev == {

@ -18,14 +18,14 @@ from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
@pytest.fixture
def instance(features: Features) -> Instance:
def instance_old(features_old: Features) -> Instance:
instance = Mock(spec=Instance)
instance.features = features
instance.features = features_old
return instance
@pytest.fixture
def features() -> Features:
def features_old() -> Features:
return Features(
instance=InstanceFeatures(
user_features=[1.0, 2.0],
@ -95,8 +95,8 @@ def test_sample_xy(sample: Sample) -> None:
assert y_actual == y_expected
def test_sample_xy_without_lp(
instance: Instance,
def test_sample_xy_without_lp_old(
instance_old: Instance,
sample_without_lp: TrainingSample,
) -> None:
x_expected = {
@ -107,15 +107,15 @@ def test_sample_xy_without_lp(
"Lower bound": [[1.0]],
"Upper bound": [[2.0]],
}
xy = ObjectiveValueComponent().sample_xy_old(instance, sample_without_lp)
xy = ObjectiveValueComponent().sample_xy_old(instance_old, sample_without_lp)
assert xy is not None
x_actual, y_actual = xy
assert x_actual == x_expected
assert y_actual == y_expected
def test_sample_xy_without_ub(
instance: Instance,
def test_sample_xy_without_ub_old(
instance_old: Instance,
sample_without_ub_old: TrainingSample,
) -> None:
x_expected = {
@ -123,7 +123,7 @@ def test_sample_xy_without_ub(
"Upper bound": [[1.0, 2.0, 3.0]],
}
y_expected = {"Lower bound": [[1.0]]}
xy = ObjectiveValueComponent().sample_xy_old(instance, sample_without_ub_old)
xy = ObjectiveValueComponent().sample_xy_old(instance_old, sample_without_ub_old)
assert xy is not None
x_actual, y_actual = xy
assert x_actual == x_expected
@ -197,10 +197,10 @@ def test_fit_xy_without_ub() -> None:
def test_sample_predict(
instance: Instance,
instance_old: Instance,
sample_old: TrainingSample,
) -> None:
x, y = ObjectiveValueComponent().sample_xy_old(instance, sample_old)
x, y = ObjectiveValueComponent().sample_xy_old(instance_old, sample_old)
comp = ObjectiveValueComponent()
comp.regressors["Lower bound"] = Mock(spec=Regressor)
comp.regressors["Upper bound"] = Mock(spec=Regressor)
@ -210,7 +210,7 @@ def test_sample_predict(
comp.regressors["Upper bound"].predict = Mock( # type: ignore
side_effect=lambda _: np.array([[60.0]])
)
pred = comp.sample_predict(instance, sample_old)
pred = comp.sample_predict_old(instance_old, sample_old)
assert pred == {
"Lower bound": 50.0,
"Upper bound": 60.0,
@ -225,17 +225,17 @@ def test_sample_predict(
)
def test_sample_predict_without_ub(
instance: Instance,
def test_sample_predict_without_ub_old(
instance_old: Instance,
sample_without_ub_old: TrainingSample,
) -> None:
x, y = ObjectiveValueComponent().sample_xy_old(instance, sample_without_ub_old)
x, y = ObjectiveValueComponent().sample_xy_old(instance_old, sample_without_ub_old)
comp = ObjectiveValueComponent()
comp.regressors["Lower bound"] = Mock(spec=Regressor)
comp.regressors["Lower bound"].predict = Mock( # type: ignore
side_effect=lambda _: np.array([[50.0]])
)
pred = comp.sample_predict(instance, sample_without_ub_old)
pred = comp.sample_predict_old(instance_old, sample_without_ub_old)
assert pred == {
"Lower bound": 50.0,
}
@ -245,13 +245,16 @@ def test_sample_predict_without_ub(
)
def test_sample_evaluate(instance: Instance, sample_old: TrainingSample) -> None:
def test_sample_evaluate_old(
instance_old: Instance,
sample_old: TrainingSample,
) -> None:
comp = ObjectiveValueComponent()
comp.regressors["Lower bound"] = Mock(spec=Regressor)
comp.regressors["Lower bound"].predict = lambda _: np.array([[1.05]]) # type: ignore
comp.regressors["Upper bound"] = Mock(spec=Regressor)
comp.regressors["Upper bound"].predict = lambda _: np.array([[2.50]]) # type: ignore
ev = comp.sample_evaluate_old(instance, sample_old)
ev = comp.sample_evaluate_old(instance_old, sample_old)
assert ev == {
"Lower bound": {
"Actual value": 1.0,

@ -146,7 +146,7 @@ def test_xy_old() -> None:
assert y_actual == y_expected
def test_xy_without_lp_solution() -> None:
def test_xy_without_lp_solution_old() -> None:
features = Features(
variables={
"x[0]": Variable(
@ -197,7 +197,7 @@ def test_xy_without_lp_solution() -> None:
assert y_actual == y_expected
def test_predict() -> None:
def test_predict_old() -> None:
clf = Mock(spec=Classifier)
clf.predict_proba = Mock(
return_value=np.array(
@ -295,7 +295,7 @@ def test_usage() -> None:
assert stats["mip_lower_bound"] == stats["mip_warm_start_value"]
def test_evaluate() -> None:
def test_evaluate_old() -> None:
comp = PrimalSolutionComponent()
comp.sample_predict = lambda _, __: { # type: ignore
"x[0]": 1.0,

@ -71,7 +71,7 @@ def sample() -> Sample:
@pytest.fixture
def instance(features: Features) -> Instance:
def instance_old(features: Features) -> Instance:
instance = Mock(spec=Instance)
instance.features = features
instance.has_static_lazy_constraints = Mock(return_value=True)
@ -79,7 +79,7 @@ def instance(features: Features) -> Instance:
@pytest.fixture
def sample2() -> TrainingSample:
def sample_old() -> TrainingSample:
return TrainingSample(
lazy_enforced={"c1", "c2", "c4"},
)
@ -122,9 +122,9 @@ def features() -> Features:
)
def test_usage_with_solver(instance: Instance) -> None:
assert instance.features is not None
assert instance.features.constraints is not None
def test_usage_with_solver(instance_old: Instance) -> None:
assert instance_old.features is not None
assert instance_old.features.constraints is not None
solver = Mock(spec=LearningSolver)
solver.use_lazy_cb = False
@ -157,17 +157,17 @@ def test_usage_with_solver(instance: Instance) -> None:
)
)
sample2: TrainingSample = TrainingSample()
sample_old: TrainingSample = TrainingSample()
stats: LearningSolveStats = {}
# LearningSolver calls before_solve_mip
component.before_solve_mip_old(
solver=solver,
instance=instance,
instance=instance_old,
model=None,
stats=stats,
features=instance.features,
training_data=sample2,
features=instance_old.features,
training_data=sample_old,
)
# Should ask ML to predict whether each lazy constraint should be enforced
@ -179,19 +179,19 @@ def test_usage_with_solver(instance: Instance) -> None:
internal.remove_constraint.assert_has_calls([call("c3")])
# LearningSolver calls after_iteration (first time)
should_repeat = component.iteration_cb(solver, instance, None)
should_repeat = component.iteration_cb(solver, instance_old, None)
assert should_repeat
# Should ask internal solver to verify if constraints in the pool are
# satisfied and add the ones that are not
c3 = instance.features.constraints["c3"]
c3 = instance_old.features.constraints["c3"]
internal.is_constraint_satisfied.assert_called_once_with(c3, tol=1.0)
internal.is_constraint_satisfied.reset_mock()
internal.add_constraint.assert_called_once_with(c3, name="c3")
internal.add_constraint.reset_mock()
# LearningSolver calls after_iteration (second time)
should_repeat = component.iteration_cb(solver, instance, None)
should_repeat = component.iteration_cb(solver, instance_old, None)
assert not should_repeat
# The lazy constraint pool should be empty by now, so no calls should be made
@ -201,15 +201,15 @@ def test_usage_with_solver(instance: Instance) -> None:
# LearningSolver calls after_solve_mip
component.after_solve_mip_old(
solver=solver,
instance=instance,
instance=instance_old,
model=None,
stats=stats,
features=instance.features,
training_data=sample2,
features=instance_old.features,
training_data=sample_old,
)
# Should update training sample
assert sample2.lazy_enforced == {"c1", "c2", "c3", "c4"}
assert sample_old.lazy_enforced == {"c1", "c2", "c3", "c4"}
# Should update stats
assert stats["LazyStatic: Removed"] == 1
@ -219,8 +219,8 @@ def test_usage_with_solver(instance: Instance) -> None:
def test_sample_predict(
instance: Instance,
sample2: TrainingSample,
instance_old: Instance,
sample_old: TrainingSample,
) -> None:
comp = StaticLazyConstraintsComponent()
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
@ -239,7 +239,7 @@ def test_sample_predict(
[0.0, 1.0], # c4
]
)
pred = comp.sample_predict(instance, sample2)
pred = comp.sample_predict(instance_old, sample_old)
assert pred == ["c1", "c2", "c4"]

Loading…
Cancel
Save