parent
27b2a1eef5
commit
e731f46b72
@ -0,0 +1,125 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from .component import Component
|
||||
from ..extractors import *
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LazyConstraint:
|
||||
def __init__(self, cid, obj):
|
||||
self.cid = cid
|
||||
self.obj = obj
|
||||
|
||||
|
||||
class StaticLazyConstraintsComponent(Component):
|
||||
def __init__(self,
|
||||
classifier=CountingClassifier(),
|
||||
threshold=0.05):
|
||||
self.threshold = threshold
|
||||
self.classifier_prototype = classifier
|
||||
self.classifiers = {}
|
||||
self.pool = []
|
||||
|
||||
def before_solve(self, solver, instance, model):
|
||||
instance.found_violated_lazy_constraints = []
|
||||
if instance.has_static_lazy_constraints():
|
||||
self._extract_and_predict_static(solver, instance)
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
pass
|
||||
|
||||
def on_callback(self, solver, instance, model):
|
||||
print(self.pool)
|
||||
for c in self.pool:
|
||||
if not solver.internal_solver.is_constraint_satisfied(c.obj):
|
||||
self.pool.remove(c)
|
||||
solver.internal_solver.add_constraint(c.obj)
|
||||
instance.found_violated_lazy_constraints += [c.cid]
|
||||
|
||||
def fit(self, training_instances):
|
||||
logger.debug("Extracting x and y...")
|
||||
x = self.x(training_instances)
|
||||
y = self.y(training_instances)
|
||||
|
||||
logger.debug("Fitting...")
|
||||
for category in tqdm(x.keys(),
|
||||
desc="Fit (lazy)",
|
||||
disable=not sys.stdout.isatty()):
|
||||
if category not in self.classifiers:
|
||||
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
||||
self.classifiers[category].fit(x[category], y[category])
|
||||
|
||||
def predict(self, instance):
|
||||
pass
|
||||
|
||||
def evaluate(self, instances):
|
||||
pass
|
||||
|
||||
def _extract_and_predict_static(self, solver, instance):
|
||||
x = {}
|
||||
constraints = {}
|
||||
for cid in solver.internal_solver.get_constraint_names():
|
||||
if instance.is_constraint_lazy(cid):
|
||||
category = instance.get_lazy_constraint_category(cid)
|
||||
if category not in self.classifiers:
|
||||
continue
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
constraints[category] = []
|
||||
x[category] += [instance.get_lazy_constraint_features(cid)]
|
||||
c = LazyConstraint(cid=cid,
|
||||
obj=solver.internal_solver.extract_constraint(cid))
|
||||
constraints[category] += [c]
|
||||
self.pool.append(c)
|
||||
for (category, x_values) in x.items():
|
||||
if isinstance(x_values[0], np.ndarray):
|
||||
x[category] = np.array(x_values)
|
||||
proba = self.classifiers[category].predict_proba(x[category])
|
||||
for i in range(len(proba)):
|
||||
if proba[i][1] > self.threshold:
|
||||
c = constraints[category][i]
|
||||
self.pool.remove(c)
|
||||
solver.internal_solver.add_constraint(c.obj)
|
||||
instance.found_violated_lazy_constraints += [c.cid]
|
||||
|
||||
def _collect_constraints(self, train_instances):
|
||||
constraints = {}
|
||||
for instance in train_instances:
|
||||
for cid in instance.found_violated_lazy_constraints:
|
||||
category = instance.get_lazy_constraint_category(cid)
|
||||
if category not in constraints:
|
||||
constraints[category] = set()
|
||||
constraints[category].add(cid)
|
||||
for (category, cids) in constraints.items():
|
||||
constraints[category] = sorted(list(cids))
|
||||
return constraints
|
||||
|
||||
def x(self, train_instances):
|
||||
result = {}
|
||||
constraints = self._collect_constraints(train_instances)
|
||||
for (category, cids) in constraints.items():
|
||||
result[category] = []
|
||||
for instance in train_instances:
|
||||
for cid in cids:
|
||||
result[category].append(instance.get_lazy_constraint_features(cid))
|
||||
return result
|
||||
|
||||
def y(self, train_instances):
|
||||
result = {}
|
||||
constraints = self._collect_constraints(train_instances)
|
||||
for (category, cids) in constraints.items():
|
||||
result[category] = []
|
||||
for instance in train_instances:
|
||||
for cid in cids:
|
||||
if cid in instance.found_violated_lazy_constraints:
|
||||
result[category].append([0, 1])
|
||||
else:
|
||||
result[category].append([1, 0])
|
||||
return result
|
@ -0,0 +1,181 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from unittest.mock import Mock, call
|
||||
|
||||
from miplearn import (StaticLazyConstraintsComponent,
|
||||
LearningSolver,
|
||||
Instance,
|
||||
InternalSolver)
|
||||
from miplearn.classifiers import Classifier
|
||||
|
||||
|
||||
def test_usage_with_solver():
|
||||
solver = Mock(spec=LearningSolver)
|
||||
internal = solver.internal_solver = Mock(spec=InternalSolver)
|
||||
internal.get_constraint_names = Mock(return_value=["c1", "c2", "c3", "c4"])
|
||||
internal.extract_constraint = Mock(side_effect=lambda cid: "<%s>" % cid)
|
||||
internal.is_constraint_satisfied = Mock(return_value=False)
|
||||
|
||||
instance = Mock(spec=Instance)
|
||||
instance.has_static_lazy_constraints = Mock(return_value=True)
|
||||
instance.is_constraint_lazy = Mock(side_effect=lambda cid: {
|
||||
"c1": False,
|
||||
"c2": True,
|
||||
"c3": True,
|
||||
"c4": True,
|
||||
}[cid])
|
||||
instance.get_lazy_constraint_features = Mock(side_effect=lambda cid: {
|
||||
"c2": [1.0, 0.0],
|
||||
"c3": [0.5, 0.5],
|
||||
"c4": [1.0],
|
||||
}[cid])
|
||||
instance.get_lazy_constraint_category = Mock(side_effect=lambda cid: {
|
||||
"c2": "type-a",
|
||||
"c3": "type-a",
|
||||
"c4": "type-b",
|
||||
}[cid])
|
||||
|
||||
component = StaticLazyConstraintsComponent(threshold=0.90)
|
||||
component.classifiers = {
|
||||
"type-a": Mock(spec=Classifier),
|
||||
"type-b": Mock(spec=Classifier),
|
||||
}
|
||||
component.classifiers["type-a"].predict_proba = \
|
||||
Mock(return_value=[
|
||||
[0.20, 0.80],
|
||||
[0.05, 0.95],
|
||||
])
|
||||
component.classifiers["type-b"].predict_proba = \
|
||||
Mock(return_value=[
|
||||
[0.02, 0.98],
|
||||
])
|
||||
|
||||
# LearningSolver calls before_solve
|
||||
component.before_solve(solver, instance, None)
|
||||
|
||||
# Should ask if instance has static lazy constraints
|
||||
instance.has_static_lazy_constraints.assert_called_once()
|
||||
|
||||
# Should ask internal solver for a list of constraints in the model
|
||||
internal.get_constraint_names.assert_called_once()
|
||||
|
||||
# Should ask if each constraint in the model is lazy
|
||||
instance.is_constraint_lazy.assert_has_calls([
|
||||
call("c1"), call("c2"), call("c3"), call("c4"),
|
||||
])
|
||||
|
||||
# For the lazy ones, should ask for features
|
||||
instance.get_lazy_constraint_features.assert_has_calls([
|
||||
call("c2"), call("c3"), call("c4"),
|
||||
])
|
||||
|
||||
# Should also ask for categories
|
||||
assert instance.get_lazy_constraint_category.call_count == 3
|
||||
instance.get_lazy_constraint_category.assert_has_calls([
|
||||
call("c2"), call("c3"), call("c4"),
|
||||
])
|
||||
|
||||
# Should ask internal solver to remove constraints identified as lazy
|
||||
assert internal.extract_constraint.call_count == 3
|
||||
internal.extract_constraint.assert_has_calls([
|
||||
call("c2"), call("c3"), call("c4"),
|
||||
])
|
||||
|
||||
# Should ask ML to predict whether each lazy constraint should be enforced
|
||||
component.classifiers["type-a"].predict_proba.assert_called_once_with([[1.0, 0.0], [0.5, 0.5]])
|
||||
component.classifiers["type-b"].predict_proba.assert_called_once_with([[1.0]])
|
||||
|
||||
# For the ones that should be enforced, should ask solver to re-add them
|
||||
# to the formulation. The remaining ones should remain in the pool.
|
||||
assert internal.add_constraint.call_count == 2
|
||||
internal.add_constraint.assert_has_calls([
|
||||
call("<c3>"), call("<c4>"),
|
||||
])
|
||||
internal.add_constraint.reset_mock()
|
||||
|
||||
# LearningSolver calls callback (first time)
|
||||
component.on_callback(solver, instance, None)
|
||||
|
||||
# Should ask internal solver to verify if constraints in the pool are
|
||||
# satisfied and add the ones that are not
|
||||
internal.is_constraint_satisfied.assert_called_once_with("<c2>")
|
||||
internal.is_constraint_satisfied.reset_mock()
|
||||
internal.add_constraint.assert_called_once_with("<c2>")
|
||||
internal.add_constraint.reset_mock()
|
||||
|
||||
# LearningSolver calls callback (second time)
|
||||
component.on_callback(solver, instance, None)
|
||||
|
||||
# The lazy constraint pool should be empty by now, so no calls should be made
|
||||
internal.is_constraint_satisfied.assert_not_called()
|
||||
internal.add_constraint.assert_not_called()
|
||||
|
||||
# Should update instance object
|
||||
assert instance.found_violated_lazy_constraints == ["c3", "c4", "c2"]
|
||||
|
||||
|
||||
def test_fit():
|
||||
instance_1 = Mock(spec=Instance)
|
||||
instance_1.found_violated_lazy_constraints = ["c1", "c2", "c4", "c5"]
|
||||
instance_1.get_lazy_constraint_category = Mock(side_effect=lambda cid: {
|
||||
"c1": "type-a",
|
||||
"c2": "type-a",
|
||||
"c3": "type-a",
|
||||
"c4": "type-b",
|
||||
"c5": "type-b",
|
||||
}[cid])
|
||||
instance_1.get_lazy_constraint_features = Mock(side_effect=lambda cid: {
|
||||
"c1": [1, 1],
|
||||
"c2": [1, 2],
|
||||
"c3": [1, 3],
|
||||
"c4": [1, 4, 0],
|
||||
"c5": [1, 5, 0],
|
||||
}[cid])
|
||||
|
||||
instance_2 = Mock(spec=Instance)
|
||||
instance_2.found_violated_lazy_constraints = ["c2", "c3", "c4"]
|
||||
instance_2.get_lazy_constraint_category = Mock(side_effect=lambda cid: {
|
||||
"c1": "type-a",
|
||||
"c2": "type-a",
|
||||
"c3": "type-a",
|
||||
"c4": "type-b",
|
||||
"c5": "type-b",
|
||||
}[cid])
|
||||
instance_2.get_lazy_constraint_features = Mock(side_effect=lambda cid: {
|
||||
"c1": [2, 1],
|
||||
"c2": [2, 2],
|
||||
"c3": [2, 3],
|
||||
"c4": [2, 4, 0],
|
||||
"c5": [2, 5, 0],
|
||||
}[cid])
|
||||
|
||||
instances = [instance_1, instance_2]
|
||||
component = StaticLazyConstraintsComponent()
|
||||
component.classifiers = {
|
||||
"type-a": Mock(spec=Classifier),
|
||||
"type-b": Mock(spec=Classifier),
|
||||
}
|
||||
|
||||
expected_constraints = {
|
||||
"type-a": ["c1", "c2", "c3"],
|
||||
"type-b": ["c4", "c5"],
|
||||
}
|
||||
expected_x = {
|
||||
"type-a": [[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3]],
|
||||
"type-b": [[1, 4, 0], [1, 5, 0], [2, 4, 0], [2, 5, 0]]
|
||||
}
|
||||
expected_y = {
|
||||
"type-a": [[0, 1], [0, 1], [1, 0], [1, 0], [0, 1], [0, 1]],
|
||||
"type-b": [[0, 1], [0, 1], [0, 1], [1, 0]]
|
||||
}
|
||||
assert component._collect_constraints(instances) == expected_constraints
|
||||
assert component.x(instances) == expected_x
|
||||
assert component.y(instances) == expected_y
|
||||
|
||||
component.fit(instances)
|
||||
component.classifiers["type-a"].fit.assert_called_once_with(expected_x["type-a"],
|
||||
expected_y["type-a"])
|
||||
component.classifiers["type-b"].fit.assert_called_once_with(expected_x["type-b"],
|
||||
expected_y["type-b"])
|
Loading…
Reference in new issue