mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Use np.ndarray for constraint methods in Instance
This commit is contained in:
@@ -11,7 +11,7 @@ from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.threshold import MinProbabilityThreshold
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.dynamic_lazy import DynamicLazyConstraintsComponent
|
||||
from miplearn.features.sample import Sample, MemorySample
|
||||
from miplearn.features.sample import MemorySample
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.solvers.tests import assert_equals
|
||||
|
||||
@@ -24,71 +24,71 @@ def training_instances() -> List[Instance]:
|
||||
samples_0 = [
|
||||
MemorySample(
|
||||
{
|
||||
"mip_constr_lazy_enforced": {"c1", "c2"},
|
||||
"static_instance_features": [5.0],
|
||||
"mip_constr_lazy_enforced": {b"c1", b"c2"},
|
||||
"static_instance_features": np.array([5.0]),
|
||||
},
|
||||
),
|
||||
MemorySample(
|
||||
{
|
||||
"mip_constr_lazy_enforced": {"c2", "c3"},
|
||||
"static_instance_features": [5.0],
|
||||
"mip_constr_lazy_enforced": {b"c2", b"c3"},
|
||||
"static_instance_features": np.array([5.0]),
|
||||
},
|
||||
),
|
||||
]
|
||||
instances[0].get_samples = Mock(return_value=samples_0) # type: ignore
|
||||
instances[0].get_constraint_categories = Mock( # type: ignore
|
||||
return_value={
|
||||
"c1": "type-a",
|
||||
"c2": "type-a",
|
||||
"c3": "type-b",
|
||||
"c4": "type-b",
|
||||
}
|
||||
return_value=np.array(["type-a", "type-a", "type-b", "type-b"], dtype="S")
|
||||
)
|
||||
instances[0].get_constraint_features = Mock( # type: ignore
|
||||
return_value={
|
||||
"c1": [1.0, 2.0, 3.0],
|
||||
"c2": [4.0, 5.0, 6.0],
|
||||
"c3": [1.0, 2.0],
|
||||
"c4": [3.0, 4.0],
|
||||
}
|
||||
return_value=np.array(
|
||||
[
|
||||
[1.0, 2.0, 3.0],
|
||||
[4.0, 5.0, 6.0],
|
||||
[1.0, 2.0, 0.0],
|
||||
[3.0, 4.0, 0.0],
|
||||
]
|
||||
)
|
||||
)
|
||||
instances[0].are_constraints_lazy = Mock( # type: ignore
|
||||
return_value=np.zeros(4, dtype=bool)
|
||||
)
|
||||
samples_1 = [
|
||||
MemorySample(
|
||||
{
|
||||
"mip_constr_lazy_enforced": {"c3", "c4"},
|
||||
"static_instance_features": [8.0],
|
||||
"mip_constr_lazy_enforced": {b"c3", b"c4"},
|
||||
"static_instance_features": np.array([8.0]),
|
||||
},
|
||||
)
|
||||
]
|
||||
instances[1].get_samples = Mock(return_value=samples_1) # type: ignore
|
||||
instances[1].get_constraint_categories = Mock( # type: ignore
|
||||
return_value={
|
||||
"c1": None,
|
||||
"c2": "type-a",
|
||||
"c3": "type-b",
|
||||
"c4": "type-b",
|
||||
}
|
||||
return_value=np.array(["", "type-a", "type-b", "type-b"], dtype="S")
|
||||
)
|
||||
instances[1].get_constraint_features = Mock( # type: ignore
|
||||
return_value={
|
||||
"c2": [7.0, 8.0, 9.0],
|
||||
"c3": [5.0, 6.0],
|
||||
"c4": [7.0, 8.0],
|
||||
}
|
||||
return_value=np.array(
|
||||
[
|
||||
[7.0, 8.0, 9.0],
|
||||
[5.0, 6.0, 0.0],
|
||||
[7.0, 8.0, 0.0],
|
||||
]
|
||||
)
|
||||
)
|
||||
instances[1].are_constraints_lazy = Mock( # type: ignore
|
||||
return_value=np.zeros(4, dtype=bool)
|
||||
)
|
||||
return instances
|
||||
|
||||
|
||||
def test_sample_xy(training_instances: List[Instance]) -> None:
|
||||
comp = DynamicLazyConstraintsComponent()
|
||||
comp.pre_fit([{"c1", "c2", "c3", "c4"}])
|
||||
comp.pre_fit([{b"c1", b"c2", b"c3", b"c4"}])
|
||||
x_expected = {
|
||||
"type-a": [[5.0, 1.0, 2.0, 3.0], [5.0, 4.0, 5.0, 6.0]],
|
||||
"type-b": [[5.0, 1.0, 2.0], [5.0, 3.0, 4.0]],
|
||||
b"type-a": np.array([[5.0, 1.0, 2.0, 3.0], [5.0, 4.0, 5.0, 6.0]]),
|
||||
b"type-b": np.array([[5.0, 1.0, 2.0, 0.0], [5.0, 3.0, 4.0, 0.0]]),
|
||||
}
|
||||
y_expected = {
|
||||
"type-a": [[False, True], [False, True]],
|
||||
"type-b": [[True, False], [True, False]],
|
||||
b"type-a": np.array([[False, True], [False, True]]),
|
||||
b"type-b": np.array([[True, False], [True, False]]),
|
||||
}
|
||||
x_actual, y_actual = comp.sample_xy(
|
||||
training_instances[0],
|
||||
@@ -98,95 +98,26 @@ def test_sample_xy(training_instances: List[Instance]) -> None:
|
||||
assert_equals(y_actual, y_expected)
|
||||
|
||||
|
||||
# def test_fit(training_instances: List[Instance]) -> None:
|
||||
# clf = Mock(spec=Classifier)
|
||||
# clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
|
||||
# comp = DynamicLazyConstraintsComponent(classifier=clf)
|
||||
# comp.fit(training_instances)
|
||||
# assert clf.clone.call_count == 2
|
||||
#
|
||||
# assert "type-a" in comp.classifiers
|
||||
# clf_a = comp.classifiers["type-a"]
|
||||
# assert clf_a.fit.call_count == 1 # type: ignore
|
||||
# assert_array_equal(
|
||||
# clf_a.fit.call_args[0][0], # type: ignore
|
||||
# np.array(
|
||||
# [
|
||||
# [5.0, 1.0, 2.0, 3.0],
|
||||
# [5.0, 4.0, 5.0, 6.0],
|
||||
# [5.0, 1.0, 2.0, 3.0],
|
||||
# [5.0, 4.0, 5.0, 6.0],
|
||||
# [8.0, 7.0, 8.0, 9.0],
|
||||
# ]
|
||||
# ),
|
||||
# )
|
||||
# assert_array_equal(
|
||||
# clf_a.fit.call_args[0][1], # type: ignore
|
||||
# np.array(
|
||||
# [
|
||||
# [False, True],
|
||||
# [False, True],
|
||||
# [True, False],
|
||||
# [False, True],
|
||||
# [True, False],
|
||||
# ]
|
||||
# ),
|
||||
# )
|
||||
#
|
||||
# assert "type-b" in comp.classifiers
|
||||
# clf_b = comp.classifiers["type-b"]
|
||||
# assert clf_b.fit.call_count == 1 # type: ignore
|
||||
# assert_array_equal(
|
||||
# clf_b.fit.call_args[0][0], # type: ignore
|
||||
# np.array(
|
||||
# [
|
||||
# [5.0, 1.0, 2.0],
|
||||
# [5.0, 3.0, 4.0],
|
||||
# [5.0, 1.0, 2.0],
|
||||
# [5.0, 3.0, 4.0],
|
||||
# [8.0, 5.0, 6.0],
|
||||
# [8.0, 7.0, 8.0],
|
||||
# ]
|
||||
# ),
|
||||
# )
|
||||
# assert_array_equal(
|
||||
# clf_b.fit.call_args[0][1], # type: ignore
|
||||
# np.array(
|
||||
# [
|
||||
# [True, False],
|
||||
# [True, False],
|
||||
# [False, True],
|
||||
# [True, False],
|
||||
# [False, True],
|
||||
# [False, True],
|
||||
# ]
|
||||
# ),
|
||||
# )
|
||||
|
||||
|
||||
def test_sample_predict_evaluate(training_instances: List[Instance]) -> None:
|
||||
comp = DynamicLazyConstraintsComponent()
|
||||
comp.known_cids.extend(["c1", "c2", "c3", "c4"])
|
||||
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
comp.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
comp.classifiers["type-a"] = Mock(spec=Classifier)
|
||||
comp.classifiers["type-b"] = Mock(spec=Classifier)
|
||||
comp.classifiers["type-a"].predict_proba = Mock( # type: ignore
|
||||
comp.known_cids.extend([b"c1", b"c2", b"c3", b"c4"])
|
||||
comp.thresholds[b"type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
comp.thresholds[b"type-b"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
comp.classifiers[b"type-a"] = Mock(spec=Classifier)
|
||||
comp.classifiers[b"type-b"] = Mock(spec=Classifier)
|
||||
comp.classifiers[b"type-a"].predict_proba = Mock( # type: ignore
|
||||
side_effect=lambda _: np.array([[0.1, 0.9], [0.8, 0.2]])
|
||||
)
|
||||
comp.classifiers["type-b"].predict_proba = Mock( # type: ignore
|
||||
comp.classifiers[b"type-b"].predict_proba = Mock( # type: ignore
|
||||
side_effect=lambda _: np.array([[0.9, 0.1], [0.1, 0.9]])
|
||||
)
|
||||
pred = comp.sample_predict(
|
||||
training_instances[0],
|
||||
training_instances[0].get_samples()[0],
|
||||
)
|
||||
assert pred == ["c1", "c4"]
|
||||
assert pred == [b"c1", b"c4"]
|
||||
ev = comp.sample_evaluate(
|
||||
training_instances[0],
|
||||
training_instances[0].get_samples()[0],
|
||||
)
|
||||
assert ev == {
|
||||
"type-a": classifier_evaluation_dict(tp=1, fp=0, tn=0, fn=1),
|
||||
"type-b": classifier_evaluation_dict(tp=0, fp=1, tn=1, fn=0),
|
||||
}
|
||||
assert ev == classifier_evaluation_dict(tp=1, fp=1, tn=1, fn=1)
|
||||
|
||||
@@ -17,6 +17,7 @@ from miplearn.components.dynamic_user_cuts import UserCutsComponent
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
from miplearn.types import ConstraintName, ConstraintCategory
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -40,13 +41,13 @@ class GurobiStableSetProblem(Instance):
|
||||
return True
|
||||
|
||||
@overrides
|
||||
def find_violated_user_cuts(self, model: Any) -> List[str]:
|
||||
def find_violated_user_cuts(self, model: Any) -> List[ConstraintName]:
|
||||
assert isinstance(model, gp.Model)
|
||||
vals = model.cbGetNodeRel(model.getVars())
|
||||
violations = []
|
||||
for clique in nx.find_cliques(self.graph):
|
||||
if sum(vals[i] for i in clique) > 1:
|
||||
violations.append(",".join([str(i) for i in clique]))
|
||||
violations.append(",".join([str(i) for i in clique]).encode())
|
||||
return violations
|
||||
|
||||
@overrides
|
||||
@@ -54,9 +55,9 @@ class GurobiStableSetProblem(Instance):
|
||||
self,
|
||||
solver: InternalSolver,
|
||||
model: Any,
|
||||
cid: str,
|
||||
cid: ConstraintName,
|
||||
) -> Any:
|
||||
clique = [int(i) for i in cid.split(",")]
|
||||
clique = [int(i) for i in cid.decode().split(",")]
|
||||
x = model.getVars()
|
||||
model.addConstr(gp.quicksum([x[i] for i in clique]) <= 1)
|
||||
|
||||
|
||||
@@ -17,6 +17,7 @@ from miplearn.solvers.internal import InternalSolver, Constraints
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
from miplearn.types import (
|
||||
LearningSolveStats,
|
||||
ConstraintCategory,
|
||||
)
|
||||
|
||||
|
||||
@@ -25,11 +26,11 @@ def sample() -> Sample:
|
||||
sample = MemorySample(
|
||||
{
|
||||
"static_constr_categories": [
|
||||
"type-a",
|
||||
"type-a",
|
||||
"type-a",
|
||||
"type-b",
|
||||
"type-b",
|
||||
b"type-a",
|
||||
b"type-a",
|
||||
b"type-a",
|
||||
b"type-b",
|
||||
b"type-b",
|
||||
],
|
||||
"static_constr_lazy": np.array([True, True, True, True, False]),
|
||||
"static_constr_names": np.array(["c1", "c2", "c3", "c4", "c5"], dtype="S"),
|
||||
@@ -68,13 +69,13 @@ def test_usage_with_solver(instance: Instance) -> None:
|
||||
)
|
||||
|
||||
component = StaticLazyConstraintsComponent(violation_tolerance=1.0)
|
||||
component.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
component.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
component.thresholds[b"type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
component.thresholds[b"type-b"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
component.classifiers = {
|
||||
"type-a": Mock(spec=Classifier),
|
||||
"type-b": Mock(spec=Classifier),
|
||||
b"type-a": Mock(spec=Classifier),
|
||||
b"type-b": Mock(spec=Classifier),
|
||||
}
|
||||
component.classifiers["type-a"].predict_proba = Mock( # type: ignore
|
||||
component.classifiers[b"type-a"].predict_proba = Mock( # type: ignore
|
||||
return_value=np.array(
|
||||
[
|
||||
[0.00, 1.00], # c1
|
||||
@@ -83,7 +84,7 @@ def test_usage_with_solver(instance: Instance) -> None:
|
||||
]
|
||||
)
|
||||
)
|
||||
component.classifiers["type-b"].predict_proba = Mock( # type: ignore
|
||||
component.classifiers[b"type-b"].predict_proba = Mock( # type: ignore
|
||||
return_value=np.array(
|
||||
[
|
||||
[0.02, 0.98], # c4
|
||||
@@ -105,8 +106,8 @@ def test_usage_with_solver(instance: Instance) -> None:
|
||||
)
|
||||
|
||||
# Should ask ML to predict whether each lazy constraint should be enforced
|
||||
component.classifiers["type-a"].predict_proba.assert_called_once()
|
||||
component.classifiers["type-b"].predict_proba.assert_called_once()
|
||||
component.classifiers[b"type-a"].predict_proba.assert_called_once()
|
||||
component.classifiers[b"type-b"].predict_proba.assert_called_once()
|
||||
|
||||
# Should ask internal solver to remove some constraints
|
||||
assert internal.remove_constraints.call_count == 1
|
||||
@@ -153,18 +154,18 @@ def test_usage_with_solver(instance: Instance) -> None:
|
||||
|
||||
def test_sample_predict(sample: Sample) -> None:
|
||||
comp = StaticLazyConstraintsComponent()
|
||||
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
comp.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
comp.classifiers["type-a"] = Mock(spec=Classifier)
|
||||
comp.classifiers["type-a"].predict_proba = lambda _: np.array( # type:ignore
|
||||
comp.thresholds[b"type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
comp.thresholds[b"type-b"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
comp.classifiers[b"type-a"] = Mock(spec=Classifier)
|
||||
comp.classifiers[b"type-a"].predict_proba = lambda _: np.array( # type:ignore
|
||||
[
|
||||
[0.0, 1.0], # c1
|
||||
[0.0, 0.9], # c2
|
||||
[0.9, 0.1], # c3
|
||||
]
|
||||
)
|
||||
comp.classifiers["type-b"] = Mock(spec=Classifier)
|
||||
comp.classifiers["type-b"].predict_proba = lambda _: np.array( # type:ignore
|
||||
comp.classifiers[b"type-b"] = Mock(spec=Classifier)
|
||||
comp.classifiers[b"type-b"].predict_proba = lambda _: np.array( # type:ignore
|
||||
[
|
||||
[0.0, 1.0], # c4
|
||||
]
|
||||
@@ -175,17 +176,17 @@ def test_sample_predict(sample: Sample) -> None:
|
||||
|
||||
def test_fit_xy() -> None:
|
||||
x = cast(
|
||||
Dict[str, np.ndarray],
|
||||
Dict[ConstraintCategory, np.ndarray],
|
||||
{
|
||||
"type-a": np.array([[1.0, 1.0], [1.0, 2.0], [1.0, 3.0]]),
|
||||
"type-b": np.array([[1.0, 4.0, 0.0]]),
|
||||
b"type-a": np.array([[1.0, 1.0], [1.0, 2.0], [1.0, 3.0]]),
|
||||
b"type-b": np.array([[1.0, 4.0, 0.0]]),
|
||||
},
|
||||
)
|
||||
y = cast(
|
||||
Dict[str, np.ndarray],
|
||||
Dict[ConstraintCategory, np.ndarray],
|
||||
{
|
||||
"type-a": np.array([[False, True], [False, True], [True, False]]),
|
||||
"type-b": np.array([[False, True]]),
|
||||
b"type-a": np.array([[False, True], [False, True], [True, False]]),
|
||||
b"type-b": np.array([[False, True]]),
|
||||
},
|
||||
)
|
||||
clf: Classifier = Mock(spec=Classifier)
|
||||
@@ -198,15 +199,15 @@ def test_fit_xy() -> None:
|
||||
)
|
||||
comp.fit_xy(x, y)
|
||||
assert clf.clone.call_count == 2
|
||||
clf_a = comp.classifiers["type-a"]
|
||||
clf_b = comp.classifiers["type-b"]
|
||||
clf_a = comp.classifiers[b"type-a"]
|
||||
clf_b = comp.classifiers[b"type-b"]
|
||||
assert clf_a.fit.call_count == 1 # type: ignore
|
||||
assert clf_b.fit.call_count == 1 # type: ignore
|
||||
assert_array_equal(clf_a.fit.call_args[0][0], x["type-a"]) # type: ignore
|
||||
assert_array_equal(clf_b.fit.call_args[0][0], x["type-b"]) # type: ignore
|
||||
assert_array_equal(clf_a.fit.call_args[0][0], x[b"type-a"]) # type: ignore
|
||||
assert_array_equal(clf_b.fit.call_args[0][0], x[b"type-b"]) # type: ignore
|
||||
assert thr.clone.call_count == 2
|
||||
thr_a = comp.thresholds["type-a"]
|
||||
thr_b = comp.thresholds["type-b"]
|
||||
thr_a = comp.thresholds[b"type-a"]
|
||||
thr_b = comp.thresholds[b"type-b"]
|
||||
assert thr_a.fit.call_count == 1 # type: ignore
|
||||
assert thr_b.fit.call_count == 1 # type: ignore
|
||||
assert thr_a.fit.call_args[0][0] == clf_a # type: ignore
|
||||
@@ -215,12 +216,12 @@ def test_fit_xy() -> None:
|
||||
|
||||
def test_sample_xy(sample: Sample) -> None:
|
||||
x_expected = {
|
||||
"type-a": [[5.0, 1.0, 1.0], [5.0, 1.0, 2.0], [5.0, 1.0, 3.0]],
|
||||
"type-b": [[5.0, 1.0, 4.0, 0.0]],
|
||||
b"type-a": [[5.0, 1.0, 1.0], [5.0, 1.0, 2.0], [5.0, 1.0, 3.0]],
|
||||
b"type-b": [[5.0, 1.0, 4.0, 0.0]],
|
||||
}
|
||||
y_expected = {
|
||||
"type-a": [[False, True], [False, True], [True, False]],
|
||||
"type-b": [[False, True]],
|
||||
b"type-a": [[False, True], [False, True], [True, False]],
|
||||
b"type-b": [[False, True]],
|
||||
}
|
||||
xy = StaticLazyConstraintsComponent().sample_xy(None, sample)
|
||||
assert xy is not None
|
||||
|
||||
Reference in New Issue
Block a user