Use np.ndarray for constraint methods in Instance

This commit is contained in:
2021-08-09 20:11:37 -05:00
parent 895cb962b6
commit e852d5cdca
16 changed files with 532 additions and 429 deletions

View File

@@ -11,7 +11,7 @@ from miplearn.classifiers import Classifier
from miplearn.classifiers.threshold import MinProbabilityThreshold
from miplearn.components import classifier_evaluation_dict
from miplearn.components.dynamic_lazy import DynamicLazyConstraintsComponent
from miplearn.features.sample import Sample, MemorySample
from miplearn.features.sample import MemorySample
from miplearn.instance.base import Instance
from miplearn.solvers.tests import assert_equals
@@ -24,71 +24,71 @@ def training_instances() -> List[Instance]:
samples_0 = [
MemorySample(
{
"mip_constr_lazy_enforced": {"c1", "c2"},
"static_instance_features": [5.0],
"mip_constr_lazy_enforced": {b"c1", b"c2"},
"static_instance_features": np.array([5.0]),
},
),
MemorySample(
{
"mip_constr_lazy_enforced": {"c2", "c3"},
"static_instance_features": [5.0],
"mip_constr_lazy_enforced": {b"c2", b"c3"},
"static_instance_features": np.array([5.0]),
},
),
]
instances[0].get_samples = Mock(return_value=samples_0) # type: ignore
instances[0].get_constraint_categories = Mock( # type: ignore
return_value={
"c1": "type-a",
"c2": "type-a",
"c3": "type-b",
"c4": "type-b",
}
return_value=np.array(["type-a", "type-a", "type-b", "type-b"], dtype="S")
)
instances[0].get_constraint_features = Mock( # type: ignore
return_value={
"c1": [1.0, 2.0, 3.0],
"c2": [4.0, 5.0, 6.0],
"c3": [1.0, 2.0],
"c4": [3.0, 4.0],
}
return_value=np.array(
[
[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0],
[1.0, 2.0, 0.0],
[3.0, 4.0, 0.0],
]
)
)
instances[0].are_constraints_lazy = Mock( # type: ignore
return_value=np.zeros(4, dtype=bool)
)
samples_1 = [
MemorySample(
{
"mip_constr_lazy_enforced": {"c3", "c4"},
"static_instance_features": [8.0],
"mip_constr_lazy_enforced": {b"c3", b"c4"},
"static_instance_features": np.array([8.0]),
},
)
]
instances[1].get_samples = Mock(return_value=samples_1) # type: ignore
instances[1].get_constraint_categories = Mock( # type: ignore
return_value={
"c1": None,
"c2": "type-a",
"c3": "type-b",
"c4": "type-b",
}
return_value=np.array(["", "type-a", "type-b", "type-b"], dtype="S")
)
instances[1].get_constraint_features = Mock( # type: ignore
return_value={
"c2": [7.0, 8.0, 9.0],
"c3": [5.0, 6.0],
"c4": [7.0, 8.0],
}
return_value=np.array(
[
[7.0, 8.0, 9.0],
[5.0, 6.0, 0.0],
[7.0, 8.0, 0.0],
]
)
)
instances[1].are_constraints_lazy = Mock( # type: ignore
return_value=np.zeros(4, dtype=bool)
)
return instances
def test_sample_xy(training_instances: List[Instance]) -> None:
comp = DynamicLazyConstraintsComponent()
comp.pre_fit([{"c1", "c2", "c3", "c4"}])
comp.pre_fit([{b"c1", b"c2", b"c3", b"c4"}])
x_expected = {
"type-a": [[5.0, 1.0, 2.0, 3.0], [5.0, 4.0, 5.0, 6.0]],
"type-b": [[5.0, 1.0, 2.0], [5.0, 3.0, 4.0]],
b"type-a": np.array([[5.0, 1.0, 2.0, 3.0], [5.0, 4.0, 5.0, 6.0]]),
b"type-b": np.array([[5.0, 1.0, 2.0, 0.0], [5.0, 3.0, 4.0, 0.0]]),
}
y_expected = {
"type-a": [[False, True], [False, True]],
"type-b": [[True, False], [True, False]],
b"type-a": np.array([[False, True], [False, True]]),
b"type-b": np.array([[True, False], [True, False]]),
}
x_actual, y_actual = comp.sample_xy(
training_instances[0],
@@ -98,95 +98,26 @@ def test_sample_xy(training_instances: List[Instance]) -> None:
assert_equals(y_actual, y_expected)
# def test_fit(training_instances: List[Instance]) -> None:
# clf = Mock(spec=Classifier)
# clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
# comp = DynamicLazyConstraintsComponent(classifier=clf)
# comp.fit(training_instances)
# assert clf.clone.call_count == 2
#
# assert "type-a" in comp.classifiers
# clf_a = comp.classifiers["type-a"]
# assert clf_a.fit.call_count == 1 # type: ignore
# assert_array_equal(
# clf_a.fit.call_args[0][0], # type: ignore
# np.array(
# [
# [5.0, 1.0, 2.0, 3.0],
# [5.0, 4.0, 5.0, 6.0],
# [5.0, 1.0, 2.0, 3.0],
# [5.0, 4.0, 5.0, 6.0],
# [8.0, 7.0, 8.0, 9.0],
# ]
# ),
# )
# assert_array_equal(
# clf_a.fit.call_args[0][1], # type: ignore
# np.array(
# [
# [False, True],
# [False, True],
# [True, False],
# [False, True],
# [True, False],
# ]
# ),
# )
#
# assert "type-b" in comp.classifiers
# clf_b = comp.classifiers["type-b"]
# assert clf_b.fit.call_count == 1 # type: ignore
# assert_array_equal(
# clf_b.fit.call_args[0][0], # type: ignore
# np.array(
# [
# [5.0, 1.0, 2.0],
# [5.0, 3.0, 4.0],
# [5.0, 1.0, 2.0],
# [5.0, 3.0, 4.0],
# [8.0, 5.0, 6.0],
# [8.0, 7.0, 8.0],
# ]
# ),
# )
# assert_array_equal(
# clf_b.fit.call_args[0][1], # type: ignore
# np.array(
# [
# [True, False],
# [True, False],
# [False, True],
# [True, False],
# [False, True],
# [False, True],
# ]
# ),
# )
def test_sample_predict_evaluate(training_instances: List[Instance]) -> None:
comp = DynamicLazyConstraintsComponent()
comp.known_cids.extend(["c1", "c2", "c3", "c4"])
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
comp.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
comp.classifiers["type-a"] = Mock(spec=Classifier)
comp.classifiers["type-b"] = Mock(spec=Classifier)
comp.classifiers["type-a"].predict_proba = Mock( # type: ignore
comp.known_cids.extend([b"c1", b"c2", b"c3", b"c4"])
comp.thresholds[b"type-a"] = MinProbabilityThreshold([0.5, 0.5])
comp.thresholds[b"type-b"] = MinProbabilityThreshold([0.5, 0.5])
comp.classifiers[b"type-a"] = Mock(spec=Classifier)
comp.classifiers[b"type-b"] = Mock(spec=Classifier)
comp.classifiers[b"type-a"].predict_proba = Mock( # type: ignore
side_effect=lambda _: np.array([[0.1, 0.9], [0.8, 0.2]])
)
comp.classifiers["type-b"].predict_proba = Mock( # type: ignore
comp.classifiers[b"type-b"].predict_proba = Mock( # type: ignore
side_effect=lambda _: np.array([[0.9, 0.1], [0.1, 0.9]])
)
pred = comp.sample_predict(
training_instances[0],
training_instances[0].get_samples()[0],
)
assert pred == ["c1", "c4"]
assert pred == [b"c1", b"c4"]
ev = comp.sample_evaluate(
training_instances[0],
training_instances[0].get_samples()[0],
)
assert ev == {
"type-a": classifier_evaluation_dict(tp=1, fp=0, tn=0, fn=1),
"type-b": classifier_evaluation_dict(tp=0, fp=1, tn=1, fn=0),
}
assert ev == classifier_evaluation_dict(tp=1, fp=1, tn=1, fn=1)

View File

@@ -17,6 +17,7 @@ from miplearn.components.dynamic_user_cuts import UserCutsComponent
from miplearn.instance.base import Instance
from miplearn.solvers.gurobi import GurobiSolver
from miplearn.solvers.learning import LearningSolver
from miplearn.types import ConstraintName, ConstraintCategory
logger = logging.getLogger(__name__)
@@ -40,13 +41,13 @@ class GurobiStableSetProblem(Instance):
return True
@overrides
def find_violated_user_cuts(self, model: Any) -> List[str]:
def find_violated_user_cuts(self, model: Any) -> List[ConstraintName]:
assert isinstance(model, gp.Model)
vals = model.cbGetNodeRel(model.getVars())
violations = []
for clique in nx.find_cliques(self.graph):
if sum(vals[i] for i in clique) > 1:
violations.append(",".join([str(i) for i in clique]))
violations.append(",".join([str(i) for i in clique]).encode())
return violations
@overrides
@@ -54,9 +55,9 @@ class GurobiStableSetProblem(Instance):
self,
solver: InternalSolver,
model: Any,
cid: str,
cid: ConstraintName,
) -> Any:
clique = [int(i) for i in cid.split(",")]
clique = [int(i) for i in cid.decode().split(",")]
x = model.getVars()
model.addConstr(gp.quicksum([x[i] for i in clique]) <= 1)

View File

@@ -17,6 +17,7 @@ from miplearn.solvers.internal import InternalSolver, Constraints
from miplearn.solvers.learning import LearningSolver
from miplearn.types import (
LearningSolveStats,
ConstraintCategory,
)
@@ -25,11 +26,11 @@ def sample() -> Sample:
sample = MemorySample(
{
"static_constr_categories": [
"type-a",
"type-a",
"type-a",
"type-b",
"type-b",
b"type-a",
b"type-a",
b"type-a",
b"type-b",
b"type-b",
],
"static_constr_lazy": np.array([True, True, True, True, False]),
"static_constr_names": np.array(["c1", "c2", "c3", "c4", "c5"], dtype="S"),
@@ -68,13 +69,13 @@ def test_usage_with_solver(instance: Instance) -> None:
)
component = StaticLazyConstraintsComponent(violation_tolerance=1.0)
component.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
component.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
component.thresholds[b"type-a"] = MinProbabilityThreshold([0.5, 0.5])
component.thresholds[b"type-b"] = MinProbabilityThreshold([0.5, 0.5])
component.classifiers = {
"type-a": Mock(spec=Classifier),
"type-b": Mock(spec=Classifier),
b"type-a": Mock(spec=Classifier),
b"type-b": Mock(spec=Classifier),
}
component.classifiers["type-a"].predict_proba = Mock( # type: ignore
component.classifiers[b"type-a"].predict_proba = Mock( # type: ignore
return_value=np.array(
[
[0.00, 1.00], # c1
@@ -83,7 +84,7 @@ def test_usage_with_solver(instance: Instance) -> None:
]
)
)
component.classifiers["type-b"].predict_proba = Mock( # type: ignore
component.classifiers[b"type-b"].predict_proba = Mock( # type: ignore
return_value=np.array(
[
[0.02, 0.98], # c4
@@ -105,8 +106,8 @@ def test_usage_with_solver(instance: Instance) -> None:
)
# Should ask ML to predict whether each lazy constraint should be enforced
component.classifiers["type-a"].predict_proba.assert_called_once()
component.classifiers["type-b"].predict_proba.assert_called_once()
component.classifiers[b"type-a"].predict_proba.assert_called_once()
component.classifiers[b"type-b"].predict_proba.assert_called_once()
# Should ask internal solver to remove some constraints
assert internal.remove_constraints.call_count == 1
@@ -153,18 +154,18 @@ def test_usage_with_solver(instance: Instance) -> None:
def test_sample_predict(sample: Sample) -> None:
comp = StaticLazyConstraintsComponent()
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
comp.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
comp.classifiers["type-a"] = Mock(spec=Classifier)
comp.classifiers["type-a"].predict_proba = lambda _: np.array( # type:ignore
comp.thresholds[b"type-a"] = MinProbabilityThreshold([0.5, 0.5])
comp.thresholds[b"type-b"] = MinProbabilityThreshold([0.5, 0.5])
comp.classifiers[b"type-a"] = Mock(spec=Classifier)
comp.classifiers[b"type-a"].predict_proba = lambda _: np.array( # type:ignore
[
[0.0, 1.0], # c1
[0.0, 0.9], # c2
[0.9, 0.1], # c3
]
)
comp.classifiers["type-b"] = Mock(spec=Classifier)
comp.classifiers["type-b"].predict_proba = lambda _: np.array( # type:ignore
comp.classifiers[b"type-b"] = Mock(spec=Classifier)
comp.classifiers[b"type-b"].predict_proba = lambda _: np.array( # type:ignore
[
[0.0, 1.0], # c4
]
@@ -175,17 +176,17 @@ def test_sample_predict(sample: Sample) -> None:
def test_fit_xy() -> None:
x = cast(
Dict[str, np.ndarray],
Dict[ConstraintCategory, np.ndarray],
{
"type-a": np.array([[1.0, 1.0], [1.0, 2.0], [1.0, 3.0]]),
"type-b": np.array([[1.0, 4.0, 0.0]]),
b"type-a": np.array([[1.0, 1.0], [1.0, 2.0], [1.0, 3.0]]),
b"type-b": np.array([[1.0, 4.0, 0.0]]),
},
)
y = cast(
Dict[str, np.ndarray],
Dict[ConstraintCategory, np.ndarray],
{
"type-a": np.array([[False, True], [False, True], [True, False]]),
"type-b": np.array([[False, True]]),
b"type-a": np.array([[False, True], [False, True], [True, False]]),
b"type-b": np.array([[False, True]]),
},
)
clf: Classifier = Mock(spec=Classifier)
@@ -198,15 +199,15 @@ def test_fit_xy() -> None:
)
comp.fit_xy(x, y)
assert clf.clone.call_count == 2
clf_a = comp.classifiers["type-a"]
clf_b = comp.classifiers["type-b"]
clf_a = comp.classifiers[b"type-a"]
clf_b = comp.classifiers[b"type-b"]
assert clf_a.fit.call_count == 1 # type: ignore
assert clf_b.fit.call_count == 1 # type: ignore
assert_array_equal(clf_a.fit.call_args[0][0], x["type-a"]) # type: ignore
assert_array_equal(clf_b.fit.call_args[0][0], x["type-b"]) # type: ignore
assert_array_equal(clf_a.fit.call_args[0][0], x[b"type-a"]) # type: ignore
assert_array_equal(clf_b.fit.call_args[0][0], x[b"type-b"]) # type: ignore
assert thr.clone.call_count == 2
thr_a = comp.thresholds["type-a"]
thr_b = comp.thresholds["type-b"]
thr_a = comp.thresholds[b"type-a"]
thr_b = comp.thresholds[b"type-b"]
assert thr_a.fit.call_count == 1 # type: ignore
assert thr_b.fit.call_count == 1 # type: ignore
assert thr_a.fit.call_args[0][0] == clf_a # type: ignore
@@ -215,12 +216,12 @@ def test_fit_xy() -> None:
def test_sample_xy(sample: Sample) -> None:
x_expected = {
"type-a": [[5.0, 1.0, 1.0], [5.0, 1.0, 2.0], [5.0, 1.0, 3.0]],
"type-b": [[5.0, 1.0, 4.0, 0.0]],
b"type-a": [[5.0, 1.0, 1.0], [5.0, 1.0, 2.0], [5.0, 1.0, 3.0]],
b"type-b": [[5.0, 1.0, 4.0, 0.0]],
}
y_expected = {
"type-a": [[False, True], [False, True], [True, False]],
"type-b": [[False, True]],
b"type-a": [[False, True], [False, True], [True, False]],
b"type-b": [[False, True]],
}
xy = StaticLazyConstraintsComponent().sample_xy(None, sample)
assert xy is not None