Use np.ndarray for constraint methods in Instance

This commit is contained in:
2021-08-09 20:11:37 -05:00
parent 895cb962b6
commit e852d5cdca
16 changed files with 532 additions and 429 deletions

View File

@@ -11,7 +11,7 @@ from miplearn.classifiers import Classifier
from miplearn.classifiers.threshold import MinProbabilityThreshold
from miplearn.components import classifier_evaluation_dict
from miplearn.components.dynamic_lazy import DynamicLazyConstraintsComponent
from miplearn.features.sample import Sample, MemorySample
from miplearn.features.sample import MemorySample
from miplearn.instance.base import Instance
from miplearn.solvers.tests import assert_equals
@@ -24,71 +24,71 @@ def training_instances() -> List[Instance]:
samples_0 = [
MemorySample(
{
"mip_constr_lazy_enforced": {"c1", "c2"},
"static_instance_features": [5.0],
"mip_constr_lazy_enforced": {b"c1", b"c2"},
"static_instance_features": np.array([5.0]),
},
),
MemorySample(
{
"mip_constr_lazy_enforced": {"c2", "c3"},
"static_instance_features": [5.0],
"mip_constr_lazy_enforced": {b"c2", b"c3"},
"static_instance_features": np.array([5.0]),
},
),
]
instances[0].get_samples = Mock(return_value=samples_0) # type: ignore
instances[0].get_constraint_categories = Mock( # type: ignore
return_value={
"c1": "type-a",
"c2": "type-a",
"c3": "type-b",
"c4": "type-b",
}
return_value=np.array(["type-a", "type-a", "type-b", "type-b"], dtype="S")
)
instances[0].get_constraint_features = Mock( # type: ignore
return_value={
"c1": [1.0, 2.0, 3.0],
"c2": [4.0, 5.0, 6.0],
"c3": [1.0, 2.0],
"c4": [3.0, 4.0],
}
return_value=np.array(
[
[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0],
[1.0, 2.0, 0.0],
[3.0, 4.0, 0.0],
]
)
)
instances[0].are_constraints_lazy = Mock( # type: ignore
return_value=np.zeros(4, dtype=bool)
)
samples_1 = [
MemorySample(
{
"mip_constr_lazy_enforced": {"c3", "c4"},
"static_instance_features": [8.0],
"mip_constr_lazy_enforced": {b"c3", b"c4"},
"static_instance_features": np.array([8.0]),
},
)
]
instances[1].get_samples = Mock(return_value=samples_1) # type: ignore
instances[1].get_constraint_categories = Mock( # type: ignore
return_value={
"c1": None,
"c2": "type-a",
"c3": "type-b",
"c4": "type-b",
}
return_value=np.array(["", "type-a", "type-b", "type-b"], dtype="S")
)
instances[1].get_constraint_features = Mock( # type: ignore
return_value={
"c2": [7.0, 8.0, 9.0],
"c3": [5.0, 6.0],
"c4": [7.0, 8.0],
}
return_value=np.array(
[
[7.0, 8.0, 9.0],
[5.0, 6.0, 0.0],
[7.0, 8.0, 0.0],
]
)
)
instances[1].are_constraints_lazy = Mock( # type: ignore
return_value=np.zeros(4, dtype=bool)
)
return instances
def test_sample_xy(training_instances: List[Instance]) -> None:
comp = DynamicLazyConstraintsComponent()
comp.pre_fit([{"c1", "c2", "c3", "c4"}])
comp.pre_fit([{b"c1", b"c2", b"c3", b"c4"}])
x_expected = {
"type-a": [[5.0, 1.0, 2.0, 3.0], [5.0, 4.0, 5.0, 6.0]],
"type-b": [[5.0, 1.0, 2.0], [5.0, 3.0, 4.0]],
b"type-a": np.array([[5.0, 1.0, 2.0, 3.0], [5.0, 4.0, 5.0, 6.0]]),
b"type-b": np.array([[5.0, 1.0, 2.0, 0.0], [5.0, 3.0, 4.0, 0.0]]),
}
y_expected = {
"type-a": [[False, True], [False, True]],
"type-b": [[True, False], [True, False]],
b"type-a": np.array([[False, True], [False, True]]),
b"type-b": np.array([[True, False], [True, False]]),
}
x_actual, y_actual = comp.sample_xy(
training_instances[0],
@@ -98,95 +98,26 @@ def test_sample_xy(training_instances: List[Instance]) -> None:
assert_equals(y_actual, y_expected)
# def test_fit(training_instances: List[Instance]) -> None:
# clf = Mock(spec=Classifier)
# clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
# comp = DynamicLazyConstraintsComponent(classifier=clf)
# comp.fit(training_instances)
# assert clf.clone.call_count == 2
#
# assert "type-a" in comp.classifiers
# clf_a = comp.classifiers["type-a"]
# assert clf_a.fit.call_count == 1 # type: ignore
# assert_array_equal(
# clf_a.fit.call_args[0][0], # type: ignore
# np.array(
# [
# [5.0, 1.0, 2.0, 3.0],
# [5.0, 4.0, 5.0, 6.0],
# [5.0, 1.0, 2.0, 3.0],
# [5.0, 4.0, 5.0, 6.0],
# [8.0, 7.0, 8.0, 9.0],
# ]
# ),
# )
# assert_array_equal(
# clf_a.fit.call_args[0][1], # type: ignore
# np.array(
# [
# [False, True],
# [False, True],
# [True, False],
# [False, True],
# [True, False],
# ]
# ),
# )
#
# assert "type-b" in comp.classifiers
# clf_b = comp.classifiers["type-b"]
# assert clf_b.fit.call_count == 1 # type: ignore
# assert_array_equal(
# clf_b.fit.call_args[0][0], # type: ignore
# np.array(
# [
# [5.0, 1.0, 2.0],
# [5.0, 3.0, 4.0],
# [5.0, 1.0, 2.0],
# [5.0, 3.0, 4.0],
# [8.0, 5.0, 6.0],
# [8.0, 7.0, 8.0],
# ]
# ),
# )
# assert_array_equal(
# clf_b.fit.call_args[0][1], # type: ignore
# np.array(
# [
# [True, False],
# [True, False],
# [False, True],
# [True, False],
# [False, True],
# [False, True],
# ]
# ),
# )
def test_sample_predict_evaluate(training_instances: List[Instance]) -> None:
comp = DynamicLazyConstraintsComponent()
comp.known_cids.extend(["c1", "c2", "c3", "c4"])
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
comp.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
comp.classifiers["type-a"] = Mock(spec=Classifier)
comp.classifiers["type-b"] = Mock(spec=Classifier)
comp.classifiers["type-a"].predict_proba = Mock( # type: ignore
comp.known_cids.extend([b"c1", b"c2", b"c3", b"c4"])
comp.thresholds[b"type-a"] = MinProbabilityThreshold([0.5, 0.5])
comp.thresholds[b"type-b"] = MinProbabilityThreshold([0.5, 0.5])
comp.classifiers[b"type-a"] = Mock(spec=Classifier)
comp.classifiers[b"type-b"] = Mock(spec=Classifier)
comp.classifiers[b"type-a"].predict_proba = Mock( # type: ignore
side_effect=lambda _: np.array([[0.1, 0.9], [0.8, 0.2]])
)
comp.classifiers["type-b"].predict_proba = Mock( # type: ignore
comp.classifiers[b"type-b"].predict_proba = Mock( # type: ignore
side_effect=lambda _: np.array([[0.9, 0.1], [0.1, 0.9]])
)
pred = comp.sample_predict(
training_instances[0],
training_instances[0].get_samples()[0],
)
assert pred == ["c1", "c4"]
assert pred == [b"c1", b"c4"]
ev = comp.sample_evaluate(
training_instances[0],
training_instances[0].get_samples()[0],
)
assert ev == {
"type-a": classifier_evaluation_dict(tp=1, fp=0, tn=0, fn=1),
"type-b": classifier_evaluation_dict(tp=0, fp=1, tn=1, fn=0),
}
assert ev == classifier_evaluation_dict(tp=1, fp=1, tn=1, fn=1)