mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Add ObjectiveValueComponent.xy
This commit is contained in:
@@ -136,8 +136,8 @@ class Component(ABC):
|
||||
) -> None:
|
||||
return
|
||||
|
||||
@staticmethod
|
||||
def xy(
|
||||
self,
|
||||
instance: Any,
|
||||
training_sample: TrainingSample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from typing import List, Dict, Union, Callable, Optional, Any, TYPE_CHECKING
|
||||
from typing import List, Dict, Union, Callable, Optional, Any, TYPE_CHECKING, Tuple
|
||||
|
||||
import numpy as np
|
||||
from sklearn.linear_model import LinearRegression
|
||||
@@ -161,3 +161,21 @@ class ObjectiveValueComponent(Component):
|
||||
},
|
||||
}
|
||||
return ev
|
||||
|
||||
@staticmethod
|
||||
def xy(
|
||||
instance: Any,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
if "Lower bound" not in sample:
|
||||
return x, y
|
||||
features = instance.get_instance_features()
|
||||
if "LP value" in sample and sample["LP value"] is not None:
|
||||
features += [sample["LP value"]]
|
||||
x["Lower bound"] = [features]
|
||||
x["Upper bound"] = [features]
|
||||
y["Lower bound"] = [[sample["Lower bound"]]]
|
||||
y["Upper bound"] = [[sample["Upper bound"]]]
|
||||
return x, y
|
||||
|
||||
@@ -297,8 +297,8 @@ class PrimalSolutionComponent(Component):
|
||||
)
|
||||
return [opt_value < 0.5, opt_value > 0.5]
|
||||
|
||||
@staticmethod
|
||||
def xy(
|
||||
self,
|
||||
instance: Any,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
|
||||
@@ -11,9 +11,33 @@ from numpy.testing import assert_array_equal
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.classifiers import Regressor
|
||||
from miplearn.components.objective import ObjectiveValueComponent
|
||||
from miplearn.types import TrainingSample
|
||||
from tests.fixtures.knapsack import get_test_pyomo_instances
|
||||
|
||||
|
||||
def test_xy() -> None:
|
||||
instance = cast(Instance, Mock(spec=Instance))
|
||||
instance.get_instance_features = Mock( # type: ignore
|
||||
return_value=[1.0, 2.0],
|
||||
)
|
||||
sample: TrainingSample = {
|
||||
"Lower bound": 1.0,
|
||||
"Upper bound": 2.0,
|
||||
"LP value": 3.0,
|
||||
}
|
||||
x_expected = {
|
||||
"Lower bound": [[1.0, 2.0, 3.0]],
|
||||
"Upper bound": [[1.0, 2.0, 3.0]],
|
||||
}
|
||||
y_expected = {
|
||||
"Lower bound": [[1.0]],
|
||||
"Upper bound": [[2.0]],
|
||||
}
|
||||
x_actual, y_actual = ObjectiveValueComponent.xy(instance, sample)
|
||||
assert x_actual == x_expected
|
||||
assert y_actual == y_expected
|
||||
|
||||
|
||||
def test_x_y_predict() -> None:
|
||||
# Construct instance
|
||||
instance = cast(Instance, Mock(spec=Instance))
|
||||
|
||||
@@ -69,7 +69,7 @@ def test_xy_with_lp_solution() -> None:
|
||||
]
|
||||
)
|
||||
}
|
||||
x_actual, y_actual = comp.xy(instance, sample)
|
||||
x_actual, y_actual = PrimalSolutionComponent.xy(instance, sample)
|
||||
assert len(x_actual.keys()) == 1
|
||||
assert len(y_actual.keys()) == 1
|
||||
assert_array_equal(x_actual["default"], x_expected["default"])
|
||||
|
||||
Reference in New Issue
Block a user