mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-09 02:48:52 -06:00
Add types to remaining files; activate mypy's disallow_untyped_defs
This commit is contained in:
@@ -16,7 +16,7 @@ from . import _get_knapsack_instance, get_internal_solvers
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def test_learning_solver():
|
||||
def test_learning_solver() -> None:
|
||||
for mode in ["exact", "heuristic"]:
|
||||
for internal_solver in get_internal_solvers():
|
||||
logger.info("Solver: %s" % internal_solver)
|
||||
@@ -30,17 +30,21 @@ def test_learning_solver():
|
||||
assert hasattr(instance, "features")
|
||||
|
||||
sample = instance.training_data[0]
|
||||
assert sample.solution is not None
|
||||
assert sample.solution["x[0]"] == 1.0
|
||||
assert sample.solution["x[1]"] == 0.0
|
||||
assert sample.solution["x[2]"] == 1.0
|
||||
assert sample.solution["x[3]"] == 1.0
|
||||
assert sample.lower_bound == 1183.0
|
||||
assert sample.upper_bound == 1183.0
|
||||
assert sample.lp_solution is not None
|
||||
assert round(sample.lp_solution["x[0]"], 3) == 1.000
|
||||
assert round(sample.lp_solution["x[1]"], 3) == 0.923
|
||||
assert round(sample.lp_solution["x[2]"], 3) == 1.000
|
||||
assert round(sample.lp_solution["x[3]"], 3) == 0.000
|
||||
assert sample.lp_value is not None
|
||||
assert round(sample.lp_value, 3) == 1287.923
|
||||
assert sample.mip_log is not None
|
||||
assert len(sample.mip_log) > 100
|
||||
|
||||
solver.fit([instance])
|
||||
@@ -51,7 +55,7 @@ def test_learning_solver():
|
||||
dill.dump(solver, file)
|
||||
|
||||
|
||||
def test_solve_without_lp():
|
||||
def test_solve_without_lp() -> None:
|
||||
for internal_solver in get_internal_solvers():
|
||||
logger.info("Solver: %s" % internal_solver)
|
||||
instance = _get_knapsack_instance(internal_solver)
|
||||
@@ -64,7 +68,7 @@ def test_solve_without_lp():
|
||||
solver.solve(instance)
|
||||
|
||||
|
||||
def test_parallel_solve():
|
||||
def test_parallel_solve() -> None:
|
||||
for internal_solver in get_internal_solvers():
|
||||
instances = [_get_knapsack_instance(internal_solver) for _ in range(10)]
|
||||
solver = LearningSolver(solver=internal_solver)
|
||||
@@ -72,10 +76,11 @@ def test_parallel_solve():
|
||||
assert len(results) == 10
|
||||
for instance in instances:
|
||||
data = instance.training_data[0]
|
||||
assert data.solution is not None
|
||||
assert len(data.solution.keys()) == 4
|
||||
|
||||
|
||||
def test_solve_fit_from_disk():
|
||||
def test_solve_fit_from_disk() -> None:
|
||||
for internal_solver in get_internal_solvers():
|
||||
# Create instances and pickle them
|
||||
instances = []
|
||||
@@ -108,7 +113,7 @@ def test_solve_fit_from_disk():
|
||||
os.remove(instance.filename)
|
||||
|
||||
|
||||
def test_simulate_perfect():
|
||||
def test_simulate_perfect() -> None:
|
||||
internal_solver = GurobiSolver()
|
||||
instance = _get_knapsack_instance(internal_solver)
|
||||
with tempfile.NamedTemporaryFile(suffix=".pkl", delete=False) as tmp:
|
||||
@@ -121,7 +126,7 @@ def test_simulate_perfect():
|
||||
assert stats["Lower bound"] == stats["Objective: Predicted lower bound"]
|
||||
|
||||
|
||||
def test_gap():
|
||||
def test_gap() -> None:
|
||||
assert LearningSolver._compute_gap(ub=0.0, lb=0.0) == 0.0
|
||||
assert LearningSolver._compute_gap(ub=1.0, lb=0.5) == 0.5
|
||||
assert LearningSolver._compute_gap(ub=1.0, lb=1.0) == 0.0
|
||||
|
||||
Reference in New Issue
Block a user