mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Update docs
This commit is contained in:
@@ -59,7 +59,9 @@
|
||||
|
||||
<!-- Main title -->
|
||||
|
||||
<a class="navbar-brand" href="..">MIPLearn</a>
|
||||
|
||||
<a class="navbar-brand" href="..">MIPLearn</a>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- Expanded navigation -->
|
||||
@@ -183,12 +185,11 @@
|
||||
<li>Random vertex weights $w_v \sim U(100, 150)$</li>
|
||||
<li>500 training instances, 50 test instances</li>
|
||||
</ul>
|
||||
<pre><code class="python">MaxWeightStableSetGenerator(w=uniform(loc=100., scale=50.),
|
||||
<pre><code class="language-python">MaxWeightStableSetGenerator(w=uniform(loc=100., scale=50.),
|
||||
n=randint(low=200, high=201),
|
||||
p=uniform(loc=0.05, scale=0.0),
|
||||
fix_graph=True)
|
||||
</code></pre>
|
||||
|
||||
<p><img alt="alt" src="../figures/benchmark_stab_a.png" /></p>
|
||||
<h2 id="traveling-salesman-problem">Traveling Salesman Problem</h2>
|
||||
<h3 id="problem-definition_1">Problem definition</h3>
|
||||
@@ -215,7 +216,7 @@ is provided, this rounding will be disabled.</p>
|
||||
<li>$\gamma_{i,j} \sim U(0.95, 1.05)$</li>
|
||||
<li>500 training instances, 50 test instances</li>
|
||||
</ul>
|
||||
<pre><code class="python">TravelingSalesmanGenerator(x=uniform(loc=0.0, scale=1000.0),
|
||||
<pre><code class="language-python">TravelingSalesmanGenerator(x=uniform(loc=0.0, scale=1000.0),
|
||||
y=uniform(loc=0.0, scale=1000.0),
|
||||
n=randint(low=350, high=351),
|
||||
gamma=uniform(loc=0.95, scale=0.1),
|
||||
@@ -223,7 +224,6 @@ is provided, this rounding will be disabled.</p>
|
||||
round=True,
|
||||
)
|
||||
</code></pre>
|
||||
|
||||
<p><img alt="alt" src="../figures/benchmark_tsp_a.png" /></p>
|
||||
<h2 id="multidimensional-0-1-knapsack-problem">Multidimensional 0-1 Knapsack Problem</h2>
|
||||
<h3 id="problem-definition_2">Problem definition</h3>
|
||||
@@ -275,7 +275,7 @@ from the provided probability distributions <code>K</code> and <code>u</code>.</
|
||||
<li>$K = 500, u \sim U(0, 1), \alpha = 0.25$</li>
|
||||
<li>500 training instances, 50 test instances</li>
|
||||
</ul>
|
||||
<pre><code class="python">MultiKnapsackGenerator(n=randint(low=250, high=251),
|
||||
<pre><code class="language-python">MultiKnapsackGenerator(n=randint(low=250, high=251),
|
||||
m=randint(low=10, high=11),
|
||||
w=uniform(loc=0.0, scale=1000.0),
|
||||
K=uniform(loc=500.0, scale=0.0),
|
||||
@@ -285,24 +285,27 @@ from the provided probability distributions <code>K</code> and <code>u</code>.</
|
||||
w_jitter=uniform(loc=0.95, scale=0.1),
|
||||
)
|
||||
</code></pre>
|
||||
|
||||
<p><img alt="alt" src="../figures/benchmark_knapsack_a.png" /></p></div>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
<footer class="col-md-12 text-center">
|
||||
|
||||
<hr>
|
||||
<p>
|
||||
<small>Copyright © 2020, UChicago Argonne, LLC. All Rights Reserved.</small><br>
|
||||
|
||||
<small>Documentation built with <a href="http://www.mkdocs.org/">MkDocs</a>.</small>
|
||||
</p>
|
||||
|
||||
<footer class="col-md-12 text-center">
|
||||
|
||||
|
||||
<hr>
|
||||
<p>
|
||||
<small>Copyright © 2020, UChicago Argonne, LLC. All Rights Reserved.</small><br>
|
||||
|
||||
<small>Documentation built with <a href="http://www.mkdocs.org/">MkDocs</a>.</small>
|
||||
</p>
|
||||
|
||||
|
||||
|
||||
|
||||
</footer>
|
||||
|
||||
|
||||
</footer>
|
||||
|
||||
<script src="//ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.js"></script>
|
||||
<script src="../js/bootstrap-3.0.3.min.js"></script>
|
||||
|
||||
|
||||
Reference in New Issue
Block a user