mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Remove most usages of put_{vector,vector_list}; deprecate get_set
This commit is contained in:
@@ -38,15 +38,6 @@ VectorList = Union[
|
||||
class Sample(ABC):
|
||||
"""Abstract dictionary-like class that stores training data."""
|
||||
|
||||
@abstractmethod
|
||||
def get_bytes(self, key: str) -> Optional[Bytes]:
|
||||
warnings.warn("Deprecated", DeprecationWarning)
|
||||
return None
|
||||
|
||||
@abstractmethod
|
||||
def put_bytes(self, key: str, value: Bytes) -> None:
|
||||
warnings.warn("Deprecated", DeprecationWarning)
|
||||
|
||||
@abstractmethod
|
||||
def get_scalar(self, key: str) -> Optional[Any]:
|
||||
pass
|
||||
@@ -64,15 +55,6 @@ class Sample(ABC):
|
||||
def put_vector(self, key: str, value: Vector) -> None:
|
||||
warnings.warn("Deprecated", DeprecationWarning)
|
||||
|
||||
@abstractmethod
|
||||
def get_vector_list(self, key: str) -> Optional[Any]:
|
||||
warnings.warn("Deprecated", DeprecationWarning)
|
||||
return None
|
||||
|
||||
@abstractmethod
|
||||
def put_vector_list(self, key: str, value: VectorList) -> None:
|
||||
warnings.warn("Deprecated", DeprecationWarning)
|
||||
|
||||
@abstractmethod
|
||||
def put_array(self, key: str, value: Optional[np.ndarray]) -> None:
|
||||
pass
|
||||
@@ -90,6 +72,7 @@ class Sample(ABC):
|
||||
pass
|
||||
|
||||
def get_set(self, key: str) -> Set:
|
||||
warnings.warn("Deprecated", DeprecationWarning)
|
||||
v = self.get_vector(key)
|
||||
if v:
|
||||
return set(v)
|
||||
@@ -97,6 +80,7 @@ class Sample(ABC):
|
||||
return set()
|
||||
|
||||
def put_set(self, key: str, value: Set) -> None:
|
||||
warnings.warn("Deprecated", DeprecationWarning)
|
||||
v = list(value)
|
||||
self.put_vector(key, v)
|
||||
|
||||
@@ -114,15 +98,6 @@ class Sample(ABC):
|
||||
for v in value:
|
||||
self._assert_is_scalar(v)
|
||||
|
||||
def _assert_is_vector_list(self, value: Any) -> None:
|
||||
assert isinstance(
|
||||
value, (list, np.ndarray)
|
||||
), f"list or numpy array expected; found instead: {value} ({value.__class__})"
|
||||
for v in value:
|
||||
if v is None:
|
||||
continue
|
||||
self._assert_is_vector(v)
|
||||
|
||||
def _assert_supported(self, value: np.ndarray) -> None:
|
||||
assert isinstance(value, np.ndarray)
|
||||
assert value.dtype.kind in "biufS", f"Unsupported dtype: {value.dtype}"
|
||||
@@ -145,10 +120,6 @@ class MemorySample(Sample):
|
||||
self._data: Dict[str, Any] = data
|
||||
self._check_data = check_data
|
||||
|
||||
@overrides
|
||||
def get_bytes(self, key: str) -> Optional[Bytes]:
|
||||
return self._get(key)
|
||||
|
||||
@overrides
|
||||
def get_scalar(self, key: str) -> Optional[Any]:
|
||||
return self._get(key)
|
||||
@@ -157,17 +128,6 @@ class MemorySample(Sample):
|
||||
def get_vector(self, key: str) -> Optional[Any]:
|
||||
return self._get(key)
|
||||
|
||||
@overrides
|
||||
def get_vector_list(self, key: str) -> Optional[Any]:
|
||||
return self._get(key)
|
||||
|
||||
@overrides
|
||||
def put_bytes(self, key: str, value: Bytes) -> None:
|
||||
assert isinstance(
|
||||
value, (bytes, bytearray)
|
||||
), f"bytes expected; found: {value}" # type: ignore
|
||||
self._put(key, value)
|
||||
|
||||
@overrides
|
||||
def put_scalar(self, key: str, value: Scalar) -> None:
|
||||
if value is None:
|
||||
@@ -184,12 +144,6 @@ class MemorySample(Sample):
|
||||
self._assert_is_vector(value)
|
||||
self._put(key, value)
|
||||
|
||||
@overrides
|
||||
def put_vector_list(self, key: str, value: VectorList) -> None:
|
||||
if self._check_data:
|
||||
self._assert_is_vector_list(value)
|
||||
self._put(key, value)
|
||||
|
||||
def _get(self, key: str) -> Optional[Any]:
|
||||
if key in self._data:
|
||||
return self._data[key]
|
||||
@@ -239,16 +193,6 @@ class Hdf5Sample(Sample):
|
||||
self.file = h5py.File(filename, mode, libver="latest")
|
||||
self._check_data = check_data
|
||||
|
||||
@overrides
|
||||
def get_bytes(self, key: str) -> Optional[Bytes]:
|
||||
if key not in self.file:
|
||||
return None
|
||||
ds = self.file[key]
|
||||
assert (
|
||||
len(ds.shape) == 1
|
||||
), f"1-dimensional array expected; found shape {ds.shape}"
|
||||
return ds[()].tobytes()
|
||||
|
||||
@overrides
|
||||
def get_scalar(self, key: str) -> Optional[Any]:
|
||||
if key not in self.file:
|
||||
@@ -277,26 +221,6 @@ class Hdf5Sample(Sample):
|
||||
else:
|
||||
return ds[:].tolist()
|
||||
|
||||
@overrides
|
||||
def get_vector_list(self, key: str) -> Optional[Any]:
|
||||
if key not in self.file:
|
||||
return None
|
||||
ds = self.file[key]
|
||||
lens = self.get_vector(f"{key}_lengths")
|
||||
if h5py.check_string_dtype(ds.dtype):
|
||||
padded = ds.asstr()[:].tolist()
|
||||
else:
|
||||
padded = ds[:].tolist()
|
||||
return _crop(padded, lens)
|
||||
|
||||
@overrides
|
||||
def put_bytes(self, key: str, value: Bytes) -> None:
|
||||
if self._check_data:
|
||||
assert isinstance(
|
||||
value, (bytes, bytearray)
|
||||
), f"bytes expected; found: {value}" # type: ignore
|
||||
self._put(key, np.frombuffer(value, dtype="uint8"), compress=True)
|
||||
|
||||
@overrides
|
||||
def put_scalar(self, key: str, value: Any) -> None:
|
||||
if value is None:
|
||||
@@ -328,29 +252,6 @@ class Hdf5Sample(Sample):
|
||||
|
||||
self._put(key, value, compress=True)
|
||||
|
||||
@overrides
|
||||
def put_vector_list(self, key: str, value: VectorList) -> None:
|
||||
if self._check_data:
|
||||
self._assert_is_vector_list(value)
|
||||
padded, lens = _pad(value)
|
||||
self.put_vector(f"{key}_lengths", lens)
|
||||
data = None
|
||||
for v in value:
|
||||
if v is None or len(v) == 0:
|
||||
continue
|
||||
if isinstance(v[0], str):
|
||||
data = np.array(padded, dtype="S")
|
||||
elif isinstance(v[0], float):
|
||||
data = np.array(padded, dtype=np.dtype("f2"))
|
||||
elif isinstance(v[0], bool):
|
||||
data = np.array(padded, dtype=bool)
|
||||
else:
|
||||
data = np.array(padded)
|
||||
break
|
||||
if data is None:
|
||||
data = np.array(padded)
|
||||
self._put(key, data, compress=True)
|
||||
|
||||
def _put(self, key: str, value: Any, compress: bool = False) -> Dataset:
|
||||
if key in self.file:
|
||||
del self.file[key]
|
||||
@@ -394,44 +295,3 @@ class Hdf5Sample(Sample):
|
||||
assert col is not None
|
||||
assert data is not None
|
||||
return coo_matrix((data, (row, col)))
|
||||
|
||||
|
||||
def _pad(veclist: VectorList) -> Tuple[VectorList, List[int]]:
|
||||
veclist = deepcopy(veclist)
|
||||
lens = [len(v) if v is not None else -1 for v in veclist]
|
||||
maxlen = max(lens)
|
||||
|
||||
# Find appropriate constant to pad the vectors
|
||||
constant: Union[int, float, str] = 0
|
||||
for v in veclist:
|
||||
if v is None or len(v) == 0:
|
||||
continue
|
||||
if isinstance(v[0], int):
|
||||
constant = 0
|
||||
elif isinstance(v[0], float):
|
||||
constant = 0.0
|
||||
elif isinstance(v[0], str):
|
||||
constant = ""
|
||||
else:
|
||||
assert False, f"unsupported data type: {v[0]}"
|
||||
|
||||
# Pad vectors
|
||||
for (i, vi) in enumerate(veclist):
|
||||
if vi is None:
|
||||
vi = veclist[i] = []
|
||||
assert isinstance(vi, list), f"list expected; found: {vi}"
|
||||
for k in range(len(vi), maxlen):
|
||||
vi.append(constant)
|
||||
|
||||
return veclist, lens
|
||||
|
||||
|
||||
def _crop(veclist: VectorList, lens: List[int]) -> VectorList:
|
||||
result: VectorList = cast(VectorList, [])
|
||||
for (i, v) in enumerate(veclist):
|
||||
if lens[i] < 0:
|
||||
result.append(None) # type: ignore
|
||||
else:
|
||||
assert isinstance(v, list)
|
||||
result.append(v[: lens[i]])
|
||||
return result
|
||||
|
||||
Reference in New Issue
Block a user