Remove most usages of put_{vector,vector_list}; deprecate get_set

This commit is contained in:
2021-08-10 11:52:02 -05:00
parent 60b9a6775f
commit ed58242b5c
9 changed files with 40 additions and 176 deletions

View File

@@ -38,15 +38,6 @@ VectorList = Union[
class Sample(ABC):
"""Abstract dictionary-like class that stores training data."""
@abstractmethod
def get_bytes(self, key: str) -> Optional[Bytes]:
warnings.warn("Deprecated", DeprecationWarning)
return None
@abstractmethod
def put_bytes(self, key: str, value: Bytes) -> None:
warnings.warn("Deprecated", DeprecationWarning)
@abstractmethod
def get_scalar(self, key: str) -> Optional[Any]:
pass
@@ -64,15 +55,6 @@ class Sample(ABC):
def put_vector(self, key: str, value: Vector) -> None:
warnings.warn("Deprecated", DeprecationWarning)
@abstractmethod
def get_vector_list(self, key: str) -> Optional[Any]:
warnings.warn("Deprecated", DeprecationWarning)
return None
@abstractmethod
def put_vector_list(self, key: str, value: VectorList) -> None:
warnings.warn("Deprecated", DeprecationWarning)
@abstractmethod
def put_array(self, key: str, value: Optional[np.ndarray]) -> None:
pass
@@ -90,6 +72,7 @@ class Sample(ABC):
pass
def get_set(self, key: str) -> Set:
warnings.warn("Deprecated", DeprecationWarning)
v = self.get_vector(key)
if v:
return set(v)
@@ -97,6 +80,7 @@ class Sample(ABC):
return set()
def put_set(self, key: str, value: Set) -> None:
warnings.warn("Deprecated", DeprecationWarning)
v = list(value)
self.put_vector(key, v)
@@ -114,15 +98,6 @@ class Sample(ABC):
for v in value:
self._assert_is_scalar(v)
def _assert_is_vector_list(self, value: Any) -> None:
assert isinstance(
value, (list, np.ndarray)
), f"list or numpy array expected; found instead: {value} ({value.__class__})"
for v in value:
if v is None:
continue
self._assert_is_vector(v)
def _assert_supported(self, value: np.ndarray) -> None:
assert isinstance(value, np.ndarray)
assert value.dtype.kind in "biufS", f"Unsupported dtype: {value.dtype}"
@@ -145,10 +120,6 @@ class MemorySample(Sample):
self._data: Dict[str, Any] = data
self._check_data = check_data
@overrides
def get_bytes(self, key: str) -> Optional[Bytes]:
return self._get(key)
@overrides
def get_scalar(self, key: str) -> Optional[Any]:
return self._get(key)
@@ -157,17 +128,6 @@ class MemorySample(Sample):
def get_vector(self, key: str) -> Optional[Any]:
return self._get(key)
@overrides
def get_vector_list(self, key: str) -> Optional[Any]:
return self._get(key)
@overrides
def put_bytes(self, key: str, value: Bytes) -> None:
assert isinstance(
value, (bytes, bytearray)
), f"bytes expected; found: {value}" # type: ignore
self._put(key, value)
@overrides
def put_scalar(self, key: str, value: Scalar) -> None:
if value is None:
@@ -184,12 +144,6 @@ class MemorySample(Sample):
self._assert_is_vector(value)
self._put(key, value)
@overrides
def put_vector_list(self, key: str, value: VectorList) -> None:
if self._check_data:
self._assert_is_vector_list(value)
self._put(key, value)
def _get(self, key: str) -> Optional[Any]:
if key in self._data:
return self._data[key]
@@ -239,16 +193,6 @@ class Hdf5Sample(Sample):
self.file = h5py.File(filename, mode, libver="latest")
self._check_data = check_data
@overrides
def get_bytes(self, key: str) -> Optional[Bytes]:
if key not in self.file:
return None
ds = self.file[key]
assert (
len(ds.shape) == 1
), f"1-dimensional array expected; found shape {ds.shape}"
return ds[()].tobytes()
@overrides
def get_scalar(self, key: str) -> Optional[Any]:
if key not in self.file:
@@ -277,26 +221,6 @@ class Hdf5Sample(Sample):
else:
return ds[:].tolist()
@overrides
def get_vector_list(self, key: str) -> Optional[Any]:
if key not in self.file:
return None
ds = self.file[key]
lens = self.get_vector(f"{key}_lengths")
if h5py.check_string_dtype(ds.dtype):
padded = ds.asstr()[:].tolist()
else:
padded = ds[:].tolist()
return _crop(padded, lens)
@overrides
def put_bytes(self, key: str, value: Bytes) -> None:
if self._check_data:
assert isinstance(
value, (bytes, bytearray)
), f"bytes expected; found: {value}" # type: ignore
self._put(key, np.frombuffer(value, dtype="uint8"), compress=True)
@overrides
def put_scalar(self, key: str, value: Any) -> None:
if value is None:
@@ -328,29 +252,6 @@ class Hdf5Sample(Sample):
self._put(key, value, compress=True)
@overrides
def put_vector_list(self, key: str, value: VectorList) -> None:
if self._check_data:
self._assert_is_vector_list(value)
padded, lens = _pad(value)
self.put_vector(f"{key}_lengths", lens)
data = None
for v in value:
if v is None or len(v) == 0:
continue
if isinstance(v[0], str):
data = np.array(padded, dtype="S")
elif isinstance(v[0], float):
data = np.array(padded, dtype=np.dtype("f2"))
elif isinstance(v[0], bool):
data = np.array(padded, dtype=bool)
else:
data = np.array(padded)
break
if data is None:
data = np.array(padded)
self._put(key, data, compress=True)
def _put(self, key: str, value: Any, compress: bool = False) -> Dataset:
if key in self.file:
del self.file[key]
@@ -394,44 +295,3 @@ class Hdf5Sample(Sample):
assert col is not None
assert data is not None
return coo_matrix((data, (row, col)))
def _pad(veclist: VectorList) -> Tuple[VectorList, List[int]]:
veclist = deepcopy(veclist)
lens = [len(v) if v is not None else -1 for v in veclist]
maxlen = max(lens)
# Find appropriate constant to pad the vectors
constant: Union[int, float, str] = 0
for v in veclist:
if v is None or len(v) == 0:
continue
if isinstance(v[0], int):
constant = 0
elif isinstance(v[0], float):
constant = 0.0
elif isinstance(v[0], str):
constant = ""
else:
assert False, f"unsupported data type: {v[0]}"
# Pad vectors
for (i, vi) in enumerate(veclist):
if vi is None:
vi = veclist[i] = []
assert isinstance(vi, list), f"list expected; found: {vi}"
for k in range(len(vi), maxlen):
vi.append(constant)
return veclist, lens
def _crop(veclist: VectorList, lens: List[int]) -> VectorList:
result: VectorList = cast(VectorList, [])
for (i, v) in enumerate(veclist):
if lens[i] < 0:
result.append(None) # type: ignore
else:
assert isinstance(v, list)
result.append(v[: lens[i]])
return result