mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Remove most usages of put_{vector,vector_list}; deprecate get_set
This commit is contained in:
@@ -3,7 +3,7 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from typing import List, Dict, Any, TYPE_CHECKING, Tuple, Optional
|
||||
from typing import List, Dict, Any, TYPE_CHECKING, Tuple, Optional, cast
|
||||
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
@@ -77,10 +77,11 @@ class ObjectiveValueComponent(Component):
|
||||
_: Optional[Instance],
|
||||
sample: Sample,
|
||||
) -> Tuple[Dict[str, List[List[float]]], Dict[str, List[List[float]]]]:
|
||||
lp_instance_features = sample.get_vector("lp_instance_features")
|
||||
if lp_instance_features is None:
|
||||
lp_instance_features = sample.get_vector("static_instance_features")
|
||||
assert lp_instance_features is not None
|
||||
lp_instance_features_np = sample.get_array("lp_instance_features")
|
||||
if lp_instance_features_np is None:
|
||||
lp_instance_features_np = sample.get_array("static_instance_features")
|
||||
assert lp_instance_features_np is not None
|
||||
lp_instance_features = cast(List[float], lp_instance_features_np.tolist())
|
||||
|
||||
# Features
|
||||
x: Dict[str, List[List[float]]] = {
|
||||
|
||||
@@ -142,13 +142,13 @@ class PrimalSolutionComponent(Component):
|
||||
) -> Tuple[Dict[Category, List[List[float]]], Dict[Category, List[List[float]]]]:
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
instance_features = sample.get_vector("static_instance_features")
|
||||
instance_features = sample.get_array("static_instance_features")
|
||||
mip_var_values = sample.get_array("mip_var_values")
|
||||
var_features = sample.get_vector_list("lp_var_features")
|
||||
var_features = sample.get_array("lp_var_features")
|
||||
var_names = sample.get_array("static_var_names")
|
||||
var_categories = sample.get_array("static_var_categories")
|
||||
if var_features is None:
|
||||
var_features = sample.get_vector_list("static_var_features")
|
||||
var_features = sample.get_array("static_var_features")
|
||||
assert instance_features is not None
|
||||
assert var_features is not None
|
||||
assert var_names is not None
|
||||
|
||||
@@ -207,14 +207,14 @@ class StaticLazyConstraintsComponent(Component):
|
||||
x: Dict[ConstraintCategory, List[List[float]]] = {}
|
||||
y: Dict[ConstraintCategory, List[List[float]]] = {}
|
||||
cids: Dict[ConstraintCategory, List[ConstraintName]] = {}
|
||||
instance_features = sample.get_vector("static_instance_features")
|
||||
constr_features = sample.get_vector_list("lp_constr_features")
|
||||
instance_features = sample.get_array("static_instance_features")
|
||||
constr_features = sample.get_array("lp_constr_features")
|
||||
constr_names = sample.get_array("static_constr_names")
|
||||
constr_categories = sample.get_vector("static_constr_categories")
|
||||
constr_categories = sample.get_array("static_constr_categories")
|
||||
constr_lazy = sample.get_array("static_constr_lazy")
|
||||
lazy_enforced = sample.get_set("mip_constr_lazy_enforced")
|
||||
if constr_features is None:
|
||||
constr_features = sample.get_vector_list("static_constr_features")
|
||||
constr_features = sample.get_array("static_constr_features")
|
||||
|
||||
assert instance_features is not None
|
||||
assert constr_features is not None
|
||||
@@ -227,7 +227,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
if not constr_lazy[cidx]:
|
||||
continue
|
||||
category = constr_categories[cidx]
|
||||
if category is None:
|
||||
if len(category) == 0:
|
||||
continue
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
|
||||
@@ -38,15 +38,6 @@ VectorList = Union[
|
||||
class Sample(ABC):
|
||||
"""Abstract dictionary-like class that stores training data."""
|
||||
|
||||
@abstractmethod
|
||||
def get_bytes(self, key: str) -> Optional[Bytes]:
|
||||
warnings.warn("Deprecated", DeprecationWarning)
|
||||
return None
|
||||
|
||||
@abstractmethod
|
||||
def put_bytes(self, key: str, value: Bytes) -> None:
|
||||
warnings.warn("Deprecated", DeprecationWarning)
|
||||
|
||||
@abstractmethod
|
||||
def get_scalar(self, key: str) -> Optional[Any]:
|
||||
pass
|
||||
@@ -64,15 +55,6 @@ class Sample(ABC):
|
||||
def put_vector(self, key: str, value: Vector) -> None:
|
||||
warnings.warn("Deprecated", DeprecationWarning)
|
||||
|
||||
@abstractmethod
|
||||
def get_vector_list(self, key: str) -> Optional[Any]:
|
||||
warnings.warn("Deprecated", DeprecationWarning)
|
||||
return None
|
||||
|
||||
@abstractmethod
|
||||
def put_vector_list(self, key: str, value: VectorList) -> None:
|
||||
warnings.warn("Deprecated", DeprecationWarning)
|
||||
|
||||
@abstractmethod
|
||||
def put_array(self, key: str, value: Optional[np.ndarray]) -> None:
|
||||
pass
|
||||
@@ -90,6 +72,7 @@ class Sample(ABC):
|
||||
pass
|
||||
|
||||
def get_set(self, key: str) -> Set:
|
||||
warnings.warn("Deprecated", DeprecationWarning)
|
||||
v = self.get_vector(key)
|
||||
if v:
|
||||
return set(v)
|
||||
@@ -97,6 +80,7 @@ class Sample(ABC):
|
||||
return set()
|
||||
|
||||
def put_set(self, key: str, value: Set) -> None:
|
||||
warnings.warn("Deprecated", DeprecationWarning)
|
||||
v = list(value)
|
||||
self.put_vector(key, v)
|
||||
|
||||
@@ -114,15 +98,6 @@ class Sample(ABC):
|
||||
for v in value:
|
||||
self._assert_is_scalar(v)
|
||||
|
||||
def _assert_is_vector_list(self, value: Any) -> None:
|
||||
assert isinstance(
|
||||
value, (list, np.ndarray)
|
||||
), f"list or numpy array expected; found instead: {value} ({value.__class__})"
|
||||
for v in value:
|
||||
if v is None:
|
||||
continue
|
||||
self._assert_is_vector(v)
|
||||
|
||||
def _assert_supported(self, value: np.ndarray) -> None:
|
||||
assert isinstance(value, np.ndarray)
|
||||
assert value.dtype.kind in "biufS", f"Unsupported dtype: {value.dtype}"
|
||||
@@ -145,10 +120,6 @@ class MemorySample(Sample):
|
||||
self._data: Dict[str, Any] = data
|
||||
self._check_data = check_data
|
||||
|
||||
@overrides
|
||||
def get_bytes(self, key: str) -> Optional[Bytes]:
|
||||
return self._get(key)
|
||||
|
||||
@overrides
|
||||
def get_scalar(self, key: str) -> Optional[Any]:
|
||||
return self._get(key)
|
||||
@@ -157,17 +128,6 @@ class MemorySample(Sample):
|
||||
def get_vector(self, key: str) -> Optional[Any]:
|
||||
return self._get(key)
|
||||
|
||||
@overrides
|
||||
def get_vector_list(self, key: str) -> Optional[Any]:
|
||||
return self._get(key)
|
||||
|
||||
@overrides
|
||||
def put_bytes(self, key: str, value: Bytes) -> None:
|
||||
assert isinstance(
|
||||
value, (bytes, bytearray)
|
||||
), f"bytes expected; found: {value}" # type: ignore
|
||||
self._put(key, value)
|
||||
|
||||
@overrides
|
||||
def put_scalar(self, key: str, value: Scalar) -> None:
|
||||
if value is None:
|
||||
@@ -184,12 +144,6 @@ class MemorySample(Sample):
|
||||
self._assert_is_vector(value)
|
||||
self._put(key, value)
|
||||
|
||||
@overrides
|
||||
def put_vector_list(self, key: str, value: VectorList) -> None:
|
||||
if self._check_data:
|
||||
self._assert_is_vector_list(value)
|
||||
self._put(key, value)
|
||||
|
||||
def _get(self, key: str) -> Optional[Any]:
|
||||
if key in self._data:
|
||||
return self._data[key]
|
||||
@@ -239,16 +193,6 @@ class Hdf5Sample(Sample):
|
||||
self.file = h5py.File(filename, mode, libver="latest")
|
||||
self._check_data = check_data
|
||||
|
||||
@overrides
|
||||
def get_bytes(self, key: str) -> Optional[Bytes]:
|
||||
if key not in self.file:
|
||||
return None
|
||||
ds = self.file[key]
|
||||
assert (
|
||||
len(ds.shape) == 1
|
||||
), f"1-dimensional array expected; found shape {ds.shape}"
|
||||
return ds[()].tobytes()
|
||||
|
||||
@overrides
|
||||
def get_scalar(self, key: str) -> Optional[Any]:
|
||||
if key not in self.file:
|
||||
@@ -277,26 +221,6 @@ class Hdf5Sample(Sample):
|
||||
else:
|
||||
return ds[:].tolist()
|
||||
|
||||
@overrides
|
||||
def get_vector_list(self, key: str) -> Optional[Any]:
|
||||
if key not in self.file:
|
||||
return None
|
||||
ds = self.file[key]
|
||||
lens = self.get_vector(f"{key}_lengths")
|
||||
if h5py.check_string_dtype(ds.dtype):
|
||||
padded = ds.asstr()[:].tolist()
|
||||
else:
|
||||
padded = ds[:].tolist()
|
||||
return _crop(padded, lens)
|
||||
|
||||
@overrides
|
||||
def put_bytes(self, key: str, value: Bytes) -> None:
|
||||
if self._check_data:
|
||||
assert isinstance(
|
||||
value, (bytes, bytearray)
|
||||
), f"bytes expected; found: {value}" # type: ignore
|
||||
self._put(key, np.frombuffer(value, dtype="uint8"), compress=True)
|
||||
|
||||
@overrides
|
||||
def put_scalar(self, key: str, value: Any) -> None:
|
||||
if value is None:
|
||||
@@ -328,29 +252,6 @@ class Hdf5Sample(Sample):
|
||||
|
||||
self._put(key, value, compress=True)
|
||||
|
||||
@overrides
|
||||
def put_vector_list(self, key: str, value: VectorList) -> None:
|
||||
if self._check_data:
|
||||
self._assert_is_vector_list(value)
|
||||
padded, lens = _pad(value)
|
||||
self.put_vector(f"{key}_lengths", lens)
|
||||
data = None
|
||||
for v in value:
|
||||
if v is None or len(v) == 0:
|
||||
continue
|
||||
if isinstance(v[0], str):
|
||||
data = np.array(padded, dtype="S")
|
||||
elif isinstance(v[0], float):
|
||||
data = np.array(padded, dtype=np.dtype("f2"))
|
||||
elif isinstance(v[0], bool):
|
||||
data = np.array(padded, dtype=bool)
|
||||
else:
|
||||
data = np.array(padded)
|
||||
break
|
||||
if data is None:
|
||||
data = np.array(padded)
|
||||
self._put(key, data, compress=True)
|
||||
|
||||
def _put(self, key: str, value: Any, compress: bool = False) -> Dataset:
|
||||
if key in self.file:
|
||||
del self.file[key]
|
||||
@@ -394,44 +295,3 @@ class Hdf5Sample(Sample):
|
||||
assert col is not None
|
||||
assert data is not None
|
||||
return coo_matrix((data, (row, col)))
|
||||
|
||||
|
||||
def _pad(veclist: VectorList) -> Tuple[VectorList, List[int]]:
|
||||
veclist = deepcopy(veclist)
|
||||
lens = [len(v) if v is not None else -1 for v in veclist]
|
||||
maxlen = max(lens)
|
||||
|
||||
# Find appropriate constant to pad the vectors
|
||||
constant: Union[int, float, str] = 0
|
||||
for v in veclist:
|
||||
if v is None or len(v) == 0:
|
||||
continue
|
||||
if isinstance(v[0], int):
|
||||
constant = 0
|
||||
elif isinstance(v[0], float):
|
||||
constant = 0.0
|
||||
elif isinstance(v[0], str):
|
||||
constant = ""
|
||||
else:
|
||||
assert False, f"unsupported data type: {v[0]}"
|
||||
|
||||
# Pad vectors
|
||||
for (i, vi) in enumerate(veclist):
|
||||
if vi is None:
|
||||
vi = veclist[i] = []
|
||||
assert isinstance(vi, list), f"list expected; found: {vi}"
|
||||
for k in range(len(vi), maxlen):
|
||||
vi.append(constant)
|
||||
|
||||
return veclist, lens
|
||||
|
||||
|
||||
def _crop(veclist: VectorList, lens: List[int]) -> VectorList:
|
||||
result: VectorList = cast(VectorList, [])
|
||||
for (i, v) in enumerate(veclist):
|
||||
if lens[i] < 0:
|
||||
result.append(None) # type: ignore
|
||||
else:
|
||||
assert isinstance(v, list)
|
||||
result.append(v[: lens[i]])
|
||||
return result
|
||||
|
||||
@@ -111,14 +111,14 @@ class FileInstance(Instance):
|
||||
def load(self) -> None:
|
||||
if self.instance is not None:
|
||||
return
|
||||
self.instance = pickle.loads(self.h5.get_bytes("pickled"))
|
||||
self.instance = pickle.loads(self.h5.get_array("pickled").tobytes())
|
||||
assert isinstance(self.instance, Instance)
|
||||
|
||||
@classmethod
|
||||
def save(cls, instance: Instance, filename: str) -> None:
|
||||
h5 = Hdf5Sample(filename, mode="w")
|
||||
instance_pkl = pickle.dumps(instance)
|
||||
h5.put_bytes("pickled", instance_pkl)
|
||||
instance_pkl = np.frombuffer(pickle.dumps(instance), dtype=np.int8)
|
||||
h5.put_array("pickled", instance_pkl)
|
||||
|
||||
@overrides
|
||||
def create_sample(self) -> Sample:
|
||||
|
||||
@@ -13,6 +13,7 @@ from miplearn.components.objective import ObjectiveValueComponent
|
||||
from miplearn.features.sample import Sample, MemorySample
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
|
||||
from miplearn.solvers.tests import assert_equals
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
@@ -21,7 +22,7 @@ def sample() -> Sample:
|
||||
{
|
||||
"mip_lower_bound": 1.0,
|
||||
"mip_upper_bound": 2.0,
|
||||
"lp_instance_features": [1.0, 2.0, 3.0],
|
||||
"lp_instance_features": np.array([1.0, 2.0, 3.0]),
|
||||
},
|
||||
)
|
||||
return sample
|
||||
@@ -29,18 +30,18 @@ def sample() -> Sample:
|
||||
|
||||
def test_sample_xy(sample: Sample) -> None:
|
||||
x_expected = {
|
||||
"Lower bound": [[1.0, 2.0, 3.0]],
|
||||
"Upper bound": [[1.0, 2.0, 3.0]],
|
||||
"Lower bound": np.array([[1.0, 2.0, 3.0]]),
|
||||
"Upper bound": np.array([[1.0, 2.0, 3.0]]),
|
||||
}
|
||||
y_expected = {
|
||||
"Lower bound": [[1.0]],
|
||||
"Upper bound": [[2.0]],
|
||||
"Lower bound": np.array([[1.0]]),
|
||||
"Upper bound": np.array([[2.0]]),
|
||||
}
|
||||
xy = ObjectiveValueComponent().sample_xy(None, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
assert y_actual == y_expected
|
||||
assert_equals(x_actual, x_expected)
|
||||
assert_equals(y_actual, y_expected)
|
||||
|
||||
|
||||
def test_fit_xy() -> None:
|
||||
|
||||
@@ -36,13 +36,15 @@ def sample() -> Sample:
|
||||
"static_constr_names": np.array(["c1", "c2", "c3", "c4", "c5"], dtype="S"),
|
||||
"static_instance_features": [5.0],
|
||||
"mip_constr_lazy_enforced": {b"c1", b"c2", b"c4"},
|
||||
"lp_constr_features": [
|
||||
[1.0, 1.0],
|
||||
[1.0, 2.0],
|
||||
[1.0, 3.0],
|
||||
[1.0, 4.0, 0.0],
|
||||
None,
|
||||
],
|
||||
"lp_constr_features": np.array(
|
||||
[
|
||||
[1.0, 1.0, 0.0],
|
||||
[1.0, 2.0, 0.0],
|
||||
[1.0, 3.0, 0.0],
|
||||
[1.0, 4.0, 0.0],
|
||||
[0.0, 0.0, 0.0],
|
||||
]
|
||||
),
|
||||
"static_constr_lazy_count": 4,
|
||||
},
|
||||
)
|
||||
@@ -216,7 +218,7 @@ def test_fit_xy() -> None:
|
||||
|
||||
def test_sample_xy(sample: Sample) -> None:
|
||||
x_expected = {
|
||||
b"type-a": [[5.0, 1.0, 1.0], [5.0, 1.0, 2.0], [5.0, 1.0, 3.0]],
|
||||
b"type-a": [[5.0, 1.0, 1.0, 0.0], [5.0, 1.0, 2.0, 0.0], [5.0, 1.0, 3.0, 0.0]],
|
||||
b"type-b": [[5.0, 1.0, 4.0, 0.0]],
|
||||
}
|
||||
y_expected = {
|
||||
|
||||
@@ -61,7 +61,7 @@ def test_knapsack() -> None:
|
||||
np.array(["default", "default", "default", "default", ""], dtype="S"),
|
||||
)
|
||||
assert_equals(
|
||||
sample.get_vector_list("static_var_features"),
|
||||
sample.get_array("static_var_features"),
|
||||
np.array(
|
||||
[
|
||||
[23.0, 505.0, 1.0, 0.32899, 0.0, 505.0, 1.0],
|
||||
@@ -155,7 +155,7 @@ def test_knapsack() -> None:
|
||||
np.array([1.0, 0.923077, 1.0, 0.0, 67.0]),
|
||||
)
|
||||
assert_equals(
|
||||
sample.get_vector_list("lp_var_features"),
|
||||
sample.get_array("lp_var_features"),
|
||||
np.array(
|
||||
[
|
||||
[
|
||||
|
||||
@@ -18,7 +18,7 @@ def test_usage() -> None:
|
||||
filename = tempfile.mktemp()
|
||||
FileInstance.save(original, filename)
|
||||
sample = Hdf5Sample(filename, check_data=True)
|
||||
assert len(sample.get_bytes("pickled")) > 0
|
||||
assert len(sample.get_array("pickled")) > 0
|
||||
|
||||
# Solve instance from disk
|
||||
solver = LearningSolver(solver=GurobiSolver())
|
||||
|
||||
Reference in New Issue
Block a user