mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Rename xy_sample to xy
This commit is contained in:
@@ -132,17 +132,17 @@ class Component:
|
||||
return
|
||||
|
||||
@staticmethod
|
||||
def xy_sample(
|
||||
def xy(
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Optional[Tuple[Dict, Dict]]:
|
||||
) -> Tuple[Dict, Dict]:
|
||||
"""
|
||||
Given a set of features and a training sample, returns a pair of x and y
|
||||
dictionaries containing, respectively, the matrices of ML features and the
|
||||
labels for the sample. If the training sample does not include label
|
||||
information, returns None.
|
||||
information, returns (x, {}).
|
||||
"""
|
||||
return None
|
||||
pass
|
||||
|
||||
def xy_instances(
|
||||
self,
|
||||
@@ -153,7 +153,7 @@ class Component:
|
||||
for instance in InstanceIterator(instances):
|
||||
assert isinstance(instance, Instance)
|
||||
for sample in instance.training_data:
|
||||
xy = self.xy_sample(instance.features, sample)
|
||||
xy = self.xy(instance.features, sample)
|
||||
if xy is None:
|
||||
continue
|
||||
x_sample, y_sample = xy
|
||||
|
||||
@@ -207,12 +207,10 @@ class StaticLazyConstraintsComponent(Component):
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def xy_sample(
|
||||
def xy(
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Optional[Tuple[Dict, Dict]]:
|
||||
if "LazyStatic: Enforced" not in sample:
|
||||
return None
|
||||
) -> Tuple[Dict, Dict]:
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
for (cid, cfeatures) in features["Constraints"].items():
|
||||
@@ -225,8 +223,9 @@ class StaticLazyConstraintsComponent(Component):
|
||||
x[category] = []
|
||||
y[category] = []
|
||||
x[category] += [cfeatures["User features"]]
|
||||
if cid in sample["LazyStatic: Enforced"]:
|
||||
y[category] += [[False, True]]
|
||||
else:
|
||||
y[category] += [[True, False]]
|
||||
if "LazyStatic: Enforced" in sample:
|
||||
if cid in sample["LazyStatic: Enforced"]:
|
||||
y[category] += [[False, True]]
|
||||
else:
|
||||
y[category] += [[True, False]]
|
||||
return x, y
|
||||
|
||||
@@ -166,12 +166,10 @@ class ObjectiveValueComponent(Component):
|
||||
return ev
|
||||
|
||||
@staticmethod
|
||||
def xy_sample(
|
||||
def xy(
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Optional[Tuple[Dict, Dict]]:
|
||||
if "Lower bound" not in sample:
|
||||
return None
|
||||
) -> Tuple[Dict, Dict]:
|
||||
f = features["Instance"]["User features"]
|
||||
if "LP value" in sample and sample["LP value"] is not None:
|
||||
f += [sample["LP value"]]
|
||||
@@ -179,8 +177,11 @@ class ObjectiveValueComponent(Component):
|
||||
"Lower bound": [f],
|
||||
"Upper bound": [f],
|
||||
}
|
||||
y = {
|
||||
"Lower bound": [[sample["Lower bound"]]],
|
||||
"Upper bound": [[sample["Upper bound"]]],
|
||||
}
|
||||
return x, y
|
||||
if "Lower bound" in sample:
|
||||
y = {
|
||||
"Lower bound": [[sample["Lower bound"]]],
|
||||
"Upper bound": [[sample["Upper bound"]]],
|
||||
}
|
||||
return x, y
|
||||
else:
|
||||
return x, {}
|
||||
|
||||
@@ -134,7 +134,7 @@ class PrimalSolutionComponent(Component):
|
||||
solution[var_name][idx] = None
|
||||
|
||||
# Compute y_pred
|
||||
x = self.x_sample(features, sample)
|
||||
x, _ = self.xy(features, sample)
|
||||
y_pred = {}
|
||||
for category in x.keys():
|
||||
assert category in self.classifiers, (
|
||||
@@ -173,7 +173,7 @@ class PrimalSolutionComponent(Component):
|
||||
):
|
||||
instance = instances[instance_idx]
|
||||
solution_actual = instance.training_data[0]["Solution"]
|
||||
solution_pred = self.predict(instance)
|
||||
solution_pred = self.predict(instance, instance.training_data[0])
|
||||
|
||||
vars_all, vars_one, vars_zero = set(), set(), set()
|
||||
pred_one_positive, pred_zero_positive = set(), set()
|
||||
@@ -213,33 +213,10 @@ class PrimalSolutionComponent(Component):
|
||||
return ev
|
||||
|
||||
@staticmethod
|
||||
def xy_sample(
|
||||
def xy(
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Optional[Tuple[Dict, Dict]]:
|
||||
if "Solution" not in sample:
|
||||
return None
|
||||
assert sample["Solution"] is not None
|
||||
return cast(
|
||||
Tuple[Dict, Dict],
|
||||
PrimalSolutionComponent._extract(features, sample),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def x_sample(
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Dict:
|
||||
return cast(
|
||||
Dict,
|
||||
PrimalSolutionComponent._extract(features, sample),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _extract(
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Union[Dict, Tuple[Dict, Dict]]:
|
||||
) -> Tuple[Dict, Dict]:
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
solution: Optional[Solution] = None
|
||||
@@ -271,7 +248,4 @@ class PrimalSolutionComponent(Component):
|
||||
"category to None."
|
||||
)
|
||||
y[category] += [[opt_value < 0.5, opt_value >= 0.5]]
|
||||
if solution is not None:
|
||||
return x, y
|
||||
else:
|
||||
return x
|
||||
return x, y
|
||||
|
||||
Reference in New Issue
Block a user