mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Rename xy_sample to xy
This commit is contained in:
@@ -132,17 +132,17 @@ class Component:
|
||||
return
|
||||
|
||||
@staticmethod
|
||||
def xy_sample(
|
||||
def xy(
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Optional[Tuple[Dict, Dict]]:
|
||||
) -> Tuple[Dict, Dict]:
|
||||
"""
|
||||
Given a set of features and a training sample, returns a pair of x and y
|
||||
dictionaries containing, respectively, the matrices of ML features and the
|
||||
labels for the sample. If the training sample does not include label
|
||||
information, returns None.
|
||||
information, returns (x, {}).
|
||||
"""
|
||||
return None
|
||||
pass
|
||||
|
||||
def xy_instances(
|
||||
self,
|
||||
@@ -153,7 +153,7 @@ class Component:
|
||||
for instance in InstanceIterator(instances):
|
||||
assert isinstance(instance, Instance)
|
||||
for sample in instance.training_data:
|
||||
xy = self.xy_sample(instance.features, sample)
|
||||
xy = self.xy(instance.features, sample)
|
||||
if xy is None:
|
||||
continue
|
||||
x_sample, y_sample = xy
|
||||
|
||||
@@ -207,12 +207,10 @@ class StaticLazyConstraintsComponent(Component):
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def xy_sample(
|
||||
def xy(
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Optional[Tuple[Dict, Dict]]:
|
||||
if "LazyStatic: Enforced" not in sample:
|
||||
return None
|
||||
) -> Tuple[Dict, Dict]:
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
for (cid, cfeatures) in features["Constraints"].items():
|
||||
@@ -225,6 +223,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
x[category] = []
|
||||
y[category] = []
|
||||
x[category] += [cfeatures["User features"]]
|
||||
if "LazyStatic: Enforced" in sample:
|
||||
if cid in sample["LazyStatic: Enforced"]:
|
||||
y[category] += [[False, True]]
|
||||
else:
|
||||
|
||||
@@ -166,12 +166,10 @@ class ObjectiveValueComponent(Component):
|
||||
return ev
|
||||
|
||||
@staticmethod
|
||||
def xy_sample(
|
||||
def xy(
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Optional[Tuple[Dict, Dict]]:
|
||||
if "Lower bound" not in sample:
|
||||
return None
|
||||
) -> Tuple[Dict, Dict]:
|
||||
f = features["Instance"]["User features"]
|
||||
if "LP value" in sample and sample["LP value"] is not None:
|
||||
f += [sample["LP value"]]
|
||||
@@ -179,8 +177,11 @@ class ObjectiveValueComponent(Component):
|
||||
"Lower bound": [f],
|
||||
"Upper bound": [f],
|
||||
}
|
||||
if "Lower bound" in sample:
|
||||
y = {
|
||||
"Lower bound": [[sample["Lower bound"]]],
|
||||
"Upper bound": [[sample["Upper bound"]]],
|
||||
}
|
||||
return x, y
|
||||
else:
|
||||
return x, {}
|
||||
|
||||
@@ -134,7 +134,7 @@ class PrimalSolutionComponent(Component):
|
||||
solution[var_name][idx] = None
|
||||
|
||||
# Compute y_pred
|
||||
x = self.x_sample(features, sample)
|
||||
x, _ = self.xy(features, sample)
|
||||
y_pred = {}
|
||||
for category in x.keys():
|
||||
assert category in self.classifiers, (
|
||||
@@ -173,7 +173,7 @@ class PrimalSolutionComponent(Component):
|
||||
):
|
||||
instance = instances[instance_idx]
|
||||
solution_actual = instance.training_data[0]["Solution"]
|
||||
solution_pred = self.predict(instance)
|
||||
solution_pred = self.predict(instance, instance.training_data[0])
|
||||
|
||||
vars_all, vars_one, vars_zero = set(), set(), set()
|
||||
pred_one_positive, pred_zero_positive = set(), set()
|
||||
@@ -213,33 +213,10 @@ class PrimalSolutionComponent(Component):
|
||||
return ev
|
||||
|
||||
@staticmethod
|
||||
def xy_sample(
|
||||
def xy(
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Optional[Tuple[Dict, Dict]]:
|
||||
if "Solution" not in sample:
|
||||
return None
|
||||
assert sample["Solution"] is not None
|
||||
return cast(
|
||||
Tuple[Dict, Dict],
|
||||
PrimalSolutionComponent._extract(features, sample),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def x_sample(
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Dict:
|
||||
return cast(
|
||||
Dict,
|
||||
PrimalSolutionComponent._extract(features, sample),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _extract(
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Union[Dict, Tuple[Dict, Dict]]:
|
||||
) -> Tuple[Dict, Dict]:
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
solution: Optional[Solution] = None
|
||||
@@ -271,7 +248,4 @@ class PrimalSolutionComponent(Component):
|
||||
"category to None."
|
||||
)
|
||||
y[category] += [[opt_value < 0.5, opt_value >= 0.5]]
|
||||
if solution is not None:
|
||||
return x, y
|
||||
else:
|
||||
return x
|
||||
|
||||
@@ -57,7 +57,7 @@ def test_xy_instance():
|
||||
instance_2 = Mock(spec=Instance)
|
||||
instance_2.training_data = ["s3"]
|
||||
instance_2.features = {}
|
||||
comp.xy_sample = _xy_sample
|
||||
comp.xy = _xy_sample
|
||||
x_expected = {
|
||||
"category_a": [
|
||||
[1, 2, 3],
|
||||
|
||||
@@ -286,7 +286,7 @@ def test_xy_sample() -> None:
|
||||
[False, True],
|
||||
],
|
||||
}
|
||||
xy = StaticLazyConstraintsComponent.xy_sample(features, sample)
|
||||
xy = StaticLazyConstraintsComponent.xy(features, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
|
||||
@@ -125,7 +125,7 @@ def test_xy_sample_with_lp() -> None:
|
||||
"Lower bound": [[1.0]],
|
||||
"Upper bound": [[2.0]],
|
||||
}
|
||||
xy = ObjectiveValueComponent.xy_sample(features, sample)
|
||||
xy = ObjectiveValueComponent.xy(features, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
@@ -150,7 +150,7 @@ def test_xy_sample_without_lp() -> None:
|
||||
"Lower bound": [[1.0]],
|
||||
"Upper bound": [[2.0]],
|
||||
}
|
||||
xy = ObjectiveValueComponent.xy_sample(features, sample)
|
||||
xy = ObjectiveValueComponent.xy(features, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
|
||||
@@ -8,15 +8,14 @@ import numpy as np
|
||||
from numpy.testing import assert_array_equal
|
||||
from scipy.stats import randint
|
||||
|
||||
from miplearn import Classifier, LearningSolver, GurobiSolver, GurobiPyomoSolver
|
||||
from miplearn import Classifier, LearningSolver
|
||||
from miplearn.classifiers.threshold import Threshold
|
||||
from miplearn.components.primal import PrimalSolutionComponent
|
||||
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
||||
from miplearn.types import TrainingSample, Features
|
||||
from tests.fixtures.knapsack import get_knapsack_instance
|
||||
|
||||
|
||||
def test_xy_sample_with_lp_solution() -> None:
|
||||
def test_xy() -> None:
|
||||
features: Features = {
|
||||
"Variables": {
|
||||
"x": {
|
||||
@@ -70,14 +69,14 @@ def test_xy_sample_with_lp_solution() -> None:
|
||||
[True, False],
|
||||
]
|
||||
}
|
||||
xy = PrimalSolutionComponent.xy_sample(features, sample)
|
||||
xy = PrimalSolutionComponent.xy(features, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
assert y_actual == y_expected
|
||||
|
||||
|
||||
def test_xy_sample_without_lp_solution() -> None:
|
||||
def test_xy_without_lp_solution() -> None:
|
||||
features: Features = {
|
||||
"Variables": {
|
||||
"x": {
|
||||
@@ -123,7 +122,7 @@ def test_xy_sample_without_lp_solution() -> None:
|
||||
[True, False],
|
||||
]
|
||||
}
|
||||
xy = PrimalSolutionComponent.xy_sample(features, sample)
|
||||
xy = PrimalSolutionComponent.xy(features, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
@@ -170,7 +169,7 @@ def test_predict() -> None:
|
||||
}
|
||||
}
|
||||
}
|
||||
x = PrimalSolutionComponent.x_sample(features, sample)
|
||||
x, _ = PrimalSolutionComponent.xy(features, sample)
|
||||
comp = PrimalSolutionComponent()
|
||||
comp.classifiers = {"default": clf}
|
||||
comp.thresholds = {"default": thr}
|
||||
|
||||
Reference in New Issue
Block a user